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CHAPTER 1

SYSTEMS OF LINEAR EQUATIONS

1.1 The Vector Space of m × n Matrices

Problems begin on page 16

True-False Questions

1. T, Let the set be A = {A1, . . . , An} and the subset be B = {A1, . . . , Ak}. If
B were dependent, then one iof its elements is a combination of the others; say
A1 = c2A2+ · · ·+ckAk. But thenA1 = c2A2+ · · ·+ckAk+0Ak+1+ . . . 0An
which contradicts the independence of A. .

2. F, For example let the dependent be {A, 2A} where A ̸= 0 and the subset be
{A}.

3. F, The same example as in 2 works.

title, edition.
By author Copyright c⃝ 2015 John Wiley & Sons, Inc.
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2 SYSTEMS OF LINEAR EQUATIONS

4. T, See the proof in 1.

5. F, For example the set might be {A,B, 2B} where {A,B} is independent.

6. T, Let the set be S. If S = {0}, then it is dependent by definition. Otherwise S
contains {0, A} where A ̸= 0, which is dependent since 0 = 0A.

7. F, It will be dependent unless X = Ai for some i.

8. F, For example the set might be {X,A,A, 3A} where {X,A} is independent.

9. T Each matrix has a non-zero entry in a position where the others have zeros.

10. F. The third is twice the first plus the second.)

11. T. If Ai is a linear combination of the other Aj , then Ati is a linear combination
of the other Atj with the same cosfficients.

12. F. tan2 x = sec2 +1.

EXERCISES

1.1.

a)

 −1 −4 −7 −10

1 −2 −5 −8

3 0 −3 −6

, [3, 0,−3,−6],

 −4

−2

0



b)

 1 8

4 32

9 72

, [9, 72],

 8

32

72



c)


1
2 −1

2

− 1
2 −1

2

−1 0

, [−1, 0],

 −1
2

−1
2

0


1.2.

(A+B) + C =


3 1 3

4 2 −2

4 3 3

2 4 −1

+


3 1 3

4 2 −2

4 3 3

2 4 −1

 =


6 2 6

8 4 −4

8 6 6

4 8 −2





THE VECTOR SPACE OF m× n MATRICES 3

A+ (B + C) =


1 1 2

0 1 −2

2 0 1

3 2 1

+


5 1 4

8 3 −2

6 6 5

1 6 −3

 =


6 2 6

8 4 −4

8 6 6

4 8 −2


1.3. C = A+B.

1.4. D = xA+ yB = zC for any specifc choice aof a, b, c

1.5.

a)
[1, 1, 4] = [1, 1, 2] + 2[0, 0, 1]

b)
[1, 2, 3] = [1, 0, 0] + 2[0, 1, 0] + 3[0, 0, 1],

c) [
1 2

0 0

]
= 0

[
0 0

1 0

]
+

[
1 0

0 0

]
+ 2

[
0 1

0 0

]
d)  1

2

3

 =

 4

5

6

−

 3

3

3

+ 0

 9

12

15


e) [

2 1

3 −4

]
= 2

[
1 0

0 0

]
+

[
0 1

0 0

]
+ 3

[
0 0

1 0

]
− 4

[
0 0

0 1

]

f)

−3

[
3 −1 2

0 1 4

]
=

[
−9 3 −6

0 −3 −12

]
g) [

1 1

0 1

]
= 0

[
1 1

2 3

]
+

[
1 2

0 0

]
+

[
0 −1

0 1

]
1.6. P2 = P5 − P1 − P3 − P4, where Pi is the ith row of P .

1.6. P2 = P5 − P1 − P3 − P4, where Pi is the ith row of P .

1.7. Let Pi be the ith row: P2 = P5 − P1 − P3 − P4

1.8. A1 cannot be a linear combination of A2, A3 and A4 because all such linear
combinations will have their (2, 1) entry equal to zero.
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1.9. Each vector has a nonzero entry in the positions where the other two vectors
have zeros.

1.10. Suppose first that A3 = xA1 + yA2. Then [0, 0, 8] = [x, 2x + 5y, 3x + 6y].
Equating the first two entries shows first that x = 0, then that y = 0, which
is impossible due to the third entry. If A2 = xA1 + yA3, then [0, 5, 6] =
[x, 2x, 3x+ 8y]. Equating the first entry shows that x = 0, which is impossible
due to the second entry. Finally, ifA1 = xA2+yA3, [1, 2, 3] = [0, 5x, 6x+8y]
which is impossible due to the first entry.

1.11. See the solution to problem 1.10.

1.12. [1,−1, 0], [1, 0, 0], [2,−2, 0], and [4,−1, 0] all belong to the span. [1, 1, 1] does
not because its last entry is nonzero.

1.13. a) −2X + Y = [1, 1, 4] (other answers are possible). b) Let [x, y, z] = aX +
bY = [−a− b, a+ 3b,−a+ 2b] and substitute into 5x+ 3y − 2z. You should
get 0. c) Any point [x, y, z] that does not solve the equation 5x+ 3y − 2z = 0
will work—for example’ [1, 1, 1].

1.14. Finding elements of the span is easy; any linear combination will work. We
note that the sum of the entries of each of the given vectors is zero. The same
is true for any element of their span. To see his, let Z be an element of the span
so that

Z = a[1, 1,−1,−1]t + b[2,−1,−3, 2]t + c[1, 3,−2,−2]t

= [a+ 2b+ c, a− b+ 3c,−a− 3b− 2c,−a+ 2b− 2c]t

The sum of the entries of Z are

(a+ 2b+ c) + (a− b+ 3c) + (−a− 3b− 2c) + (−a+ 2b− 2c) = 0

Thus, any vector such as [1, 1, 1, 1]t whose entries don’t total to zero cannot be
in the span.

1.15. The general element Z of the span is

Z = a[−1, 2, 1]t + b[2, 5, 1]t = [−a+ 2b, 2a+ 5b, a+ b]t

The third entry will equal zero if a = −b. For example, we might try a = 1,
b = −1 which makes Z = [−3,−3, 0]t. This, however, does not have its
first two entries positive. However, if we let a = −1 and b = 1, we find that
Z = [3, 3, 0]t, which does work.

1.16. No. From the second and third entries aX+ bY has positive entries only if both
a and b are negative; hence the first entry is negative.

1.17. No. For aX + bY to have only positive entries we require a − b > 0 and
−2a+ 2b > 0 which contradict each other.
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1.18. Yes. aX + bY has positive entries if, for example, a and b are positive and
a > b.

1.19. a) f(x) = 2 + sinx, b) f(x) = 2 + cosx, c) No. If f(x) = a cosx + b sinx
then f(0) = a and f(π) = −a would both be positive which is impossible.

1.20. a) aX + 0Y for any a ∈ R. b) aX + bY for any non-zero a, b ∈ R for which
4a+3b = 0. c) Since the intersection of two planes through the origin is a line,
the span of {X,Y } must be a line. Hence let X = [x, y, x] where z ̸= 0 any
Y = cX where c ̸= 1.

1.21. For s, t ∈ R let sX + tY = Z = [x3, y3, z3]. Then

ax3 + by3 + cz3 = a(sx1 + tx2) + b(sy1 + ty2)c(sz1 + tz2)

= s(ax1 + by1 + cz1) + t(ax2 + by2 + cz2) = 0

1.22.
In 1.16, a− b = 0 and a− c = 0 so a = b = c ̸= 0. In 1.17, a− 2b+ 4c = 0
and −a + 2b + 3c = 0. Hence c = 0 and a = 2b ̸= 0. The constants exist
because every plane has a normal vector.

1.23. For the first part, use various values of a, b, and c in aX + bY + cZ. For the
second part note that for all scalars a, b and c the (2, 1) entry of aX + bY + cZ
is zero. Hence any matrix W in M(2, 2) such that W2,1 ̸= 0 will not be in the
span.

1.24.

a) The line containing the origin and the point (1, 2).

b) All of R2.

c) No. From part b) it appears that if A and B are independent elements of
M(1, 2) then any other element of M(1, 2) will be a linear combination of
them.

d) The plane containing the two given vectors.

e) [1, 2, 1] = [1, 1, 0] + [0, 1, 1]. Hence both [1, 2, 1] and [0, 1, 1] belong to the
plane from part e) and the planes in parts d) and e) are the same.

f) The span of these vectors is the line through the origin containing each of
them. Two independent vectors will span a plane but two dependent vectors
will span a line.

g) The span is the line through [0, 0, 0] containing [1, 1, 1]. The span of two
linearly dependent vectors is a line through the origin.

1.25. Let V andW be elements of the span. Then V = aX+bY andW = cX+dY .
Then for s, t ∈ R, sV + tW = (as+ ct)X + (bs+ dt)Y which belongs to the
span of X and Y .
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1.26. Let the columns of A be Ai, i = 1, 2, 3. Then 3A3 −A2 = A1.

1.27. Let the rows of A be Ai, i = 1, 2, 3. Then A1 = 2A2 + 2A3.

1.28. It is not possible. If the second row is a multiple of the first then

A =

[
a b

ca cb

]

Let the columns of A be Ai, i = 1, 2. If a = b = 0, then the set of columns
is {0}, which is a dependent set. Otherwise either A1 = ab−1A2 or A2 =
ba−1A1. The argument for the case where the first row is a multiple of the
second is similar.

1.29. Let one row be a linear combination of the other rows. This is easily done
keeping all entries non-zero.

1.31. a) Yes: D = 5A − 2B. b) Yes: B = A − C so D = 3A + 2C. c) Nothing.
Given A and B, dependent or not, let C = A−B and D = 2A+B + 3C.

1.32. a) Yes: D = A−B+3(A−B). b) Yes: D = A−B+3C = A−(C−A)+3C. c)
Nothing. GivenA andC, dependent or not, letB = A−C andD = A−B+3C.

1.33.

a) 119
(
1
3 (3 sin

2 x)− 1
5 (−5 cos2)

)
= 119

b) sinhx = 1
2 (e

x − e−x) = 1
4 (2e

x)− 1
6 (3e

−x)

c) − sinhx+ coshx = 1
2 (−e

x + e−x) + 1
2 (e

x + e−x) = e−x,

d) From the double angle formula for the cosine function
cos(2x) = − sin2 x+ cos2 x.

e) From the double angle formula for the cosine function
cos(2x) = cos2 x− sin2 x = 2 cos2 x− 1.

f) (x+ 3)2 = x2 + 6x+ 9.

g) x2 + 3x+ 3 = 3(x+ 1) + 1
2 (2x

2)

h) From the angle addition formulas for the sine and cosine functions

sin(x+
π

4
) = sin(π/4) cosx+ cos(π/4) sinx =

√
2

2
(cosx+ sinx)

cos(x+
π

4
) = cos(π/4) cosx− sin(π/4) cosx =

√
2

2
(cosx− sinx)

sinx =
1√
2

(
sin(x+

π

4
)− cos(x+

π

4
)
)
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i)
ln [(x2 + 1)3/(x4 + 7)] = 3 ln(x2 + 1)− ln(x4 + 7)

= 3 ln(x2 + 1)− 2 ln
√
x4 + 7.

1.34. The span is the set of polynomials of degree d ≤ 2. Any pair of such polyno-
mials answers the first question.

1.35. The span is the set of polynomials of degree d ≤ 3. Any pair of such polyno-
mials answers the first question.

1.36. a) Let B =

[
x y

z w

]
. Then

A+B =

[
x+ a y + b

z + c w + d

]
=

[
x y

z w

]

Hence, x + a = x, y + b = y, z + c = c, and w + d = d, which imply that
x = y = z = w = 0. Hence, B = 0. b) Solved similarly to a).

1.37. See Example 1.4 on page 11 of the text. For example to prove i) we let X ∈
M(n,m), X = [xij ]. For scalars k and l

(k + l)X = [(k + l)xij ]

= [kxij + lxij ]

= [kxij ] + [lxij ] = kX + lX

1.38. In order, we used vector space properties c), e), e), f), g), j).

1.39. We used Proposition 2 and vector space properties h) and g).

−(2X + 3Y ) = (−1)(2X + 3Y )

= (−1)(2X) + (−1)(3Y )

= (−2)X + (−3)Y

1.40. The steps are as shown below. The vector space properties used were Step 1: a)
and e), Step 2: c) and e), Step 3: b), e), and Proposition 2 on page 14, Step 4:
b), e), and g), Step 5: f), Step 6: h), g), Step 7 j).

−(aX) + (aX + (bY + cZ)) = −(aX) + 0

(−(aX) + aX) + (bY + cZ) = −(aX)

0+ (bY + cZ) = −1(aX)
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bY + cZ = (−a)X
(−a)−1(bY + cZ) = (−a)−1((−a)X)

(((−a)−1b)Y + ((−a)−1c)Z) = 1X(
− b

a

)
Y +

(
− c

a

)
Z = X

1.41. The steps are as shown below. The vector space properties used were Step 1:
given, Step 2: a) and e), Step 3: c), e), Step 4: b), e), and e), Step 5: b), e).

X + Y = 0

−X + (X + Y ) = −X + 0

(−X +X) + Y = −X
0+ Y = −X

Y = −X

1.42. The steps are as shown below. The vector space properties used were j) and
i)along with (1.5) on page 12.

X + (−1)X = (1)X + (−1)X

= (1 + (−1))X

= 0

1.1.2 Applications to Graph Theory I

Problems begin on page 24

Self-Study Questions

1. The matrices for parts a), b), and c) are respectively


0 2 0 1

1 0 0 1

0 1 0 0

0 0 1 0

 ,

0 1 0 1 2

1 0 1 0 1

0 1 0 1 0

0 0 1 0 0

0 0 0 1 0

 ,



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 1 1 1 1 0


2. Possible routes are as in Figure 1.1

3. An airline would not have a flight from a given city A to itself.
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A B

C

A
B

D
C

(a) (b)

Figure 1.1 Exercise 2.

EXERCISES

1.1. When every city is connected by round trip flights.

1.2. If the jth column is zero then there are no flights into city j. If the ith row is
zero, then there are no flights out of city i.

1.3. We list the vertices in the order MGM,MGF,PGM,PGF,F,M,S1,S2,D1,D2.

0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


1.4. In a dominance relationship if person idominates person j then person j will

not dominate person j and vice versa. Hence either aij and aji equal 0.

1.5. The route matrix is

B =


2 0 2 1

1 1 2 1

2 0 2 1

0 3 0 3


Remark. In Section (3.2.2) on page 179 we show that the two step route matrix
is the square of the one step route matrix.
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1.6. We list the teams in alphabetical order. The win-loss matrix is

M =


0 0 1 1 1

1 0 0 1 0

0 1 0 1 1

0 0 0 0 0

1 0 0 1 0


The number of wins of the jth team is the sume of the entries in the jth row.
The number of losses is the sum of the entries in the jth column. Thus team C
had 3 wins and one loss.

1.2 Systems

Problems begin on page 36

In our solutions, Roman numerals refer to equations in a system. Thus, for exam-
ple “IV” is the fourth equation in a given system.

True-False Questions

1. F. The solution would be a plane if two of the equations are scalar multiples of
the first.

2. T. If it has more than one solution, it will have an infinite number of solutions.

3. F. The system would have two free variables. Hence the solution would be a
plane.

4. F. The equations might be inconsistent.

5. F. It would have an infinite number of solutions if the equations are dependent.

6. T. The rank is the maximum number of independent equations.

7. a) and b) are false. The planes described by the last equation in each system do
not intersect. Hence if system i) is consistent, system (ii) will be inconsistent.
c) is false. Translating one of the planes in Figure 1.15 on page 33 could still
produce an inconsistent system.

EXERCISES

1.1. X is a solution since 4 · 1− 2 · 1− 1− 1 = 0 and 1 + 3 · 1− 2 · 1− 2 · 1 = 0.
Y is not since 1 + 3 · 2− 2 · (−1)− 2 · 1 = 7.

1.2. Let Z = aX + bY = [a+ b, a + 2b, a − b, a + b]. Substituting Z into the left
side of equation I and simplifying produces 0 and substituting Z into the left
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side of equation II and simplifying produces 7b. Hence Z is a solution to the
system if and only if b = 0.

1.3. Let Z = aX + bY = [a + b, a + b, a + 2b, a]t. Substituting Z into the left
sides of both equation I and equation II and simplifying produces 0. Hence Z
is a solution to the system for all a and b.

1.4. Let Z = aU + bV = [ax+ bx′, ay+ by′, az + bz′, aw+ bw′]t. Substituting Z
into the left sides of both equation I and equation II and simplifying produces
0. Hence Z is a solution to the system for all a and b.

1.5. Z = aU + bV = [a + b, a + b, 2a + b,−a]t. a + b = 1. Substituting Z into
the left side of equation I and simplifying produces a + b and substituting Z
into the left side of equation II and simplifying produces 2a+ 2b. Hence Z is a
solution if and only if a+ b = 1.

1.6. Let Z = aU + bV = [ax+ bx′, ay+ by′, az+ bz′, aw+ bw′]t. Since U and V
satisfy equation I, substituting Z into the left side of both equation I produces

a(4x− 2y − z − w) + b(4x′ − 2y′ − z′ − w′) = a+ b.

Similarly substituting Z into the left side of both equation I produces

a(x+ 3y − 2z − 2w) + b(x′ + 3y′ − 2z′ − 2w′) = 2a+ 2b.

Hence Z is a solution if and only if a+ b = 1.

1.7. In each exercise we give the reduced echelon form of the coefficient matrix
followed by the translation vector and the spanning vectors’

a)

[
1 −3 2

0 0 0

]
, [2, 0]t, [3, 1]t.

b)

 1 0 0 −59/9

0 1 0 20/9

0 0 1 8/9

, 1
9 [−59, 20, 8]t, 0.

c)

 1 0 17/2 1

0 1 −5/2 0

0 0 0 0

, [1, 0, 0]t, 1
2 [−17, 5, 2]t, 2I + II=III.

d)

 1 0 17/2 0

0 1 −5/2 0

0 0 0 1

, Inconsistent: 2I + II contradicts III.

e)

 1 0 0 1 11

0 1 0 −1 −6

0 0 1 1 2

, [11,−6, 2, 0]t, [−1, 1,−1, 1]t.
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f)

 1 0 0 10/7 11/7

0 1 0 1/7 6/7

0 0 1 −23/14 1/7

, 1
7 [11, 6, 1, 0]

t, 1
14 [−20,−2, 23, 2].

g) Inconsistent. I + 2II contradicts III.

h)

 1 0 1 0

0 1 0 −1/3

0 0 0 0

, − 1
3 [0, 1, 0]

t, [−1, 0, 1]t.

i)

 1 0 0 6/25

0 1 0 −9/25

0 0 1 7/5

, 1
25 [6,−9, 35]t, 0.

j)


1 0 3/4 1 5/4

0 1 1/4 0 −1/4

0 0 0 0 0

0 0 0 0 0

, 1
4 [5,−1, 0, 0]t, 1

4 [−3,−1, 4, 0]t, [−1, 0, 0, 1]t,

III=4I - II, IV=I + 2II. Since this is a rank 2 system with 4 variables, there
are two free variables.

k)


1 0 3/4 1 0

0 1 1/4 0 0

0 0 0 0 1

0 0 0 0 0

. Inconsistent. I + 2II contradicts IV.

l)


1 0 1/3 −14/3 3

0 1 −2/3 4/3 −1

0 0 0 0 0

0 0 0 0 0

, [3,−1, 0, 0]t, 1
3 [14,−4, 0, 3]t, 1

3 [−1, 2, 3, 0]t,

III=I+ 2II, IV=7 I+3 II.

1.8. To find the two different solutions choose two different sets of values for the
arbitrary parameters, e.g. first make all of them 0 and than make one equal 1
and the rest equal 0.

1.9. For rank 2, let 3 of the equations be linear combinations of 2 given indepen-
dent equations. For ranks 1 and 3 begin with 1 and 3 independent equations
respectively.

1.10. A point (x, y) solves the system if and only if it lies on both lines. Since the
lines are parallel, there is no solution to the system.

1.11. The first two lines meet at (0, 1). The third line passes through (0, a). Hence th
system is consistent if and only if a = 1.
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1.2.2 Applications to Circuit Theory

Problems begin on page 43

Self-Study Questions

1. The new drop is E = iR = 3 · 7 = 21 volts.

2. The new drop is E = iR = 2 · 5 = 10 volts.

3. The assumed directions are as in Figure 1.2. We obtain the following equations:

Current Law:

i1 = i3 + i2 (Nodes C and F)

Voltage Law:

0 = 11 + 3i3 + 1 (Loop ABCFA)
0 = 3i3 + 1− 6i2 (Loop CFEDC)

+

-

+
-

1i

2i 2i

1i
3i

6 ohm

3 ohm

11 v

1 v

DE

F C

BA

 

Figure 1.2 Exercise 2 assumed flows.

1.1.

a) We solve the system found in Exercise 3. We find i1 = 35
6 amperes from C

to B, i2 = 11
6 amperes from E to D, i3 = 4 amperes from F to C.

b) The equations are

i1 = i2 + i3 (Node C)
0 = 5 + 6i2 (Loop ABCFA)
0 = 6i2 − 10i3 + 4 (Loop CFEDC)



14 SYSTEMS OF LINEAR EQUATIONS

+

-

+

-

+

-

1i1i
2i

3i4i

5i

5i

6i

5 v

4 v

3 v

3 ohm

10 ohm

6 ohm+

-

+

-

1i1i
2i

3i
3i

5 v

4 v

10 ohm

6 ohm

(b)

DE

A B

CF

A B

D

EF

G

H C

  

(c)

Figure 1.3 Exercises 1.1.b and 1.1.c assumed flows.

+

-

1i

1i

2i

3i
4i

5i 6i

1 ohm

3 ohm 4 ohm

4 ohm

2 ohm

A

B

C

D

E

5 v

Figure 1.4 Exercise 1.2 assumed flows.

+

-
1i

+

-
1i

2i

3i

  3R  1R

  2R

9 v

Circuit A Circuit B

9 v

Figure 1.5 Exercise 1.3 assumed flows.

yielding the solution i1 = − 14
15 , i2 = −5/6, i3 = −1/10.
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c) The equations are

i1 = i2 + i3 (Node C)
i3 = i4 + i5 (Node C)
0 = 5 + 6i2 (Loop ABCHA)
0 = 6i2 − 10i4 − 4 (Loop CHGDC)
0 = 10i4 − 3− 3i5 (Loop CHGDC)

yielding the solution i1 = −86/15, i2 = −5/6, i3 = −49/10, i4 = −9/10, i5 =
−4.

1.2. The equations are

i1 = i2 + i5 (Node A)
i2 = i6 + i3 (Node D)
i4 = i6 + i5 (Node B)
i1 = i4 + i3 (Node C)
0 = 5 + 4i2 + 4i3 (Loop EADCE)
0 = 5 + i5 + 3i4 (Loop EABCE)
0 = i5 − 2i6 − 4i2 (Loop ADBA)

(1.1)

yielding the solution

i1 = −295/152, i2 = −75/152, i3 = −115/152,

i4 = −45/38, i5 = −55/38, i6 = 5/19

1.3. Assumming a clockwise flow of current, the equations are

i1 = i2 + i3

0 = −9 +R1i2

0 = −9 +R2i3

i1 = 9R2+R1

R1R2
, i2 = 9/R1, i3 = 9/R2.

On the other hand, in Circuit B, the voltage law yields −9 + i1R3 = 0 so
i3 = 9/R3 showing the equivalence.

1.3 Gaussian Elimination

Problems begin on page 60

True-False Questions

1. F. One of the rows could represent the equation 0 = 1.
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2. F. If the system is consistent, then there are 3 pivot variables; hence no free
variables.

3. T. This is a homogeneous system with more unknowns than equations.

4. F. Four row operations are required.

5. F. Rows III+IV=[0, 0, 0, 2] which corresponds to the inconsistent equation 0 =
2.

EXERCISES

1.1. a) Neither, b) echelon, c) neither, d) echelon e) reduced echelon.

1.2. We give the solutions followed by the reduced forms.

a)


0

−4− t

−5/2 + t

3/2− 1/2 t

t

, b)


−1

1

0

1

, c)


−3/2

5/2

−1/2

1/2

, d)


9− 2 t

1

t

−2

3

, e)


1− 2 t

2

t

1

3



a)


1 0 2 4 0 1

0 1 −2 0 3 1

0 0 2 4 0 1

0 0 0 2 1 3

, b)

 0 1 0 −2 0

0 0 1 2 0

0 0 0 0 1



c)


3 1 2 6 0

0 2/3 1/3 −1 1

0 0 2 4 1

0 0 0 −5/2 −5/4

, d)

 1 1/2 0 5 0 −1/2

0 0 1 −2 0 0

0 0 0 0 1 1

,

e)


1 0 2 0 0 1

0 1 0 0 0 2

0 0 0 1 0 1

0 0 0 0 1 3



1.3. a)

 1 0 1 0 3

0 1 −1 0 1

0 0 0 1 0

, b)


1 0 0 0 −1

0 1 0 0 1

0 0 1 0 0

0 0 0 1 1

, c)

[
1 0 10

3

0 1 1
3

]
,

d)

 1 1/2 0 5 0 −1/2

0 0 1 −2 0 0

0 0 0 0 1 1

, e) and f)

[
1 0

0 1

]
,
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g)

 1 0 −1
2 0 5

0 1 1 0 −1

0 0 0 1 2

, h) and i)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

j)


1 0 −1/3 −1/3

0 1 7/3 4/3

0 0 0 0

0 0 0 0


1.4. e) , f), h), and i) represent inconsistent systems. Solutions:

a)


3− t

1 + t

t

0

, b)


−1

1

0

1

, c)

[
10/3

1/3

]
, d)


−1/2− t/2− 5s

t

2s

s

1



g)


5 + 1/2 t

−1− t

t

2

, j)

 −1/3 + 1/3 t

4/3− 7/3 t

t



1.5. We give an echelon form for the coefficient matrix followed by the condition:

a)

 1 1 2 b

0 −1 −7 a− 3 b

0 0 0 c− a− 2b

, c = a+ 2b,

b)

 −1 −2 3 b

0 −4 20 c− b

0 0 35 a− 5 b+ 2 r

, No restrictions,

c)

 2 −3 −2 b

0 4 7 −2 b+ a

0 0 0 c− a

, a = c.

1.6. The right side of I + 2II contradicts III unless a+ 2b = c.
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1.7. The conditions are 3b+ c− 2a = 0 and d− 3a+2b = 0 since an echelon form
of the augmented matrix is

2 4 1 3 a

0 7 7/2 5/2 b+ 3/2 a

0 0 0 0 3b+ c− 2a

0 0 0 0 d− 3a+ 2b


1.8. Let Ai, i = 1, 2, 3, 4, be the rows of the coefficient matrix. Then 3A2 + A3 −

2A1 = 0 and A4 − 3A1 + 2A2 = 0.

1.9. Let equation (1.30) be written X = T1 + tX1 + sX2. As suggested in the
hint, replace t by 1 + r + s obtaining X = (T1 +X1) + rX1 + s(X1 +X2)
which is identical with equation (1.29). Conversely, replacing r by −1 + t− s
in equation (1.21) results in equation (1.30).

1.10. We give the coefficient matrix, the reduced form, the solution, and the free
variable:

a)


2 2 2 3 4

1 1 1 1 1

2 3 4 5 2

1 3 5 11 9

,


1 0 −1 0 5

0 1 2 0 −6

0 0 0 1 2

0 0 0 0 0

,

[x, y, z, w]t = [5 + t,−6− 2t, t, 2]t, free variable: z.

b)


2 2 2 3 4

1 1 1 1 1

2 4 3 5 2

1 5 3 11 9

,


1 0 1/2 0 2

0 1 1/2 0 −3

0 0 0 1 2

0 0 0 0 0

,

[x, y, z, w]t = [2− t/2, t,−3− t/2, 2]t, free variable: y.

c) In a), t = z while in b) z = −3 − t/2. Hence in a) we replace t with
−3 − t/2 and simplify to get b). In b), t = y while in a) y = −6 − 2t.
Hence in b) we replace t with −6− 2t and simplify to get a).

1.11. From the reduced form below, z is still the free variable. The translation vector
T is the unique solution with z = 0 and the spanning vector is is Y − T where
Y is the unique solution with z = 1. Hence the expressions for the solutions
will be the same. 

1 0 2 0 −6

0 1 −1 0 5

0 0 0 1 2

0 0 0 0 0


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1.12.

a) For a line we want one free variable, hence four pivot variables. Thus we
need a rank four system of five equations in five unknowns with no zero
coefficients. To create such a system begin with a 5 × 6 matrix that is in
echelon form which has exactly four non-zero rows and as few non-zero en-
tries as possible and perform elementary row operations on it until a matrix
with all non-zero entries is obtained.

b) For a plane we need two free variables, hence three pivot variables. Thus
we need a rank three system of five equations in five unknowns with no zero
coefficients. We produce the system exactly as described in a), except we
begin with matrix that is in echelon form which has exactly threer non-zero
rows.

c) For a line we want one free variable, hence two pivot variables and rank 2.
We produce the example as in part a) beginning with a 5× 3 rank 2 echelon
form matrix.

d) Now we make each equation a multiple of one single equation.

1.13. a) Since T = 0, each spanning vector is the solution obtained by setting one
free variable equal to 1 and the other equal to 0. Hence the free variables are z
and w.

b)

 1 0 3 −1 0

0 1 −4 −4 0

0 0 0 0 0


1.14. Each spanning vector should each have a 1 in a position corresponding to one

of the free variables while the other spanning vectors have 0’s in this position.

1.15. Since 0 is a solution to the system, there must be an infinite number of solutions.

1.16. In each part we give the augmented matrix corresponding to the system B =
x1X1 + x2X2 + x3X3, its reduced form, and our conclusion, which is based
upon whether or not the system is consistent.

a)

 1 1 1 3

0 2 1 2

−1 1 1 1

,

 1 0 0 1

0 1 0 0

0 0 1 2

, in the span,

b)

 1 1 1 a

0 2 1 b

−1 1 1 c

,

 1 0 0 −c/2 + a/2

0 1 0 −c/2− a/2 + b

0 0 1 c+ a− b

, in the span,
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c)

 1 1 1 3

0 2 1 2

−1 1 1 1

,

 1 0 0 1

0 1 0 0

0 0 1 2

, not in the span.

1.17. Let x = (b+ 2a)/4 and y = (b− 2a)/4.

1.18. This is not hard. Just pick a vector at random. The chances are that it won’t be
in the span. To prove it, reason as in Exercise 1.16.

1.19. Since there are five variables and four non-zero rows in the reduced form, there
must be a free variable.

1.20. Since there are n variables and at most n−1 non-zero rows in the reduced form,
there must be a free variable.

1.21. [
1 0

0 1

]
,

[
1 a

0 0

]
,

[
0 1

0 0

]

1.22. Each non-zero row has a 1 in its pivot position and all other rows have a zero in
this position.

1.23. a) From the answer to 1.5, No. b) It is the 3×3 identity augmented by a column
of constants, c) No. The reduced form has at most two non-zero rows; hence
two pivot entries. If consistent, it has a free variable; hence an infinite number
of solutions.

1.24. If the rows ofA are dependent thenA has one of the forms below. In either case
the result is clear.

A =

[
a b

ea eb

]
A =

[
ec ed

c d

]

1.25. Our system is equivalent with

z + w = −x = −s
2z + w = −y = −t

which yields [x, y, z, w]t = s[1, 0, 1,−2]t + t[0, 1,−1, 1]t.

1.26. No. The equations imply x = −2(z + w) = −2y.

1.27. a) We assume that the first column of A is non-zero since this case will take
the largest number of flops to reduce. We interchange rows so that a11 ̸= 0 (0
flops), replace a1j by a1j/a11 for 2 ≤ j ≤ n + 1 (n flops), and finally replace
a11 by 1(0 flops). b) We replace a2j with a2j − a21a1j for 2 ≤ j ≤ n + 1
(2n flops) and set a2,1 = 0 (0 flops). c) We do b) n − 1 times for a total of
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n + 2n(n − 1) flops. d) After completing c) we are left with a matrix B of
the following form. We may assume that bi2 ̸= 0 for some i ≥ 0 since we
are interested in the maximum number of flops to reduce the matrix to echelon
form. We repeat a)-c) for the (n − 1) × n matrix obtained by deleting the first
row and column of B. Doing this repeatedly results in the stated formula.

B =


1 ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
...

...
. . .

...
...

0 ∗ . . . ∗ ∗

 C =


1 ∗ . . . ∗ ∗
0 1 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . 1 ∗


d) Now we start with an n× (n+ 1) matrix C of the form above. Multiplying
the last row by a scalar takes one flop since a · 1 = a. Subtracting cj,n times
this row from the jth row takes 1 flop since cj,n − cj,n = 0. Hence eliminating
the entries above the final 1 in C requires 2(n − 1) flops. Thus e) follows by
successively repeating this operation for each diagonal entry in C. f) is clear.

1.3.1 Applications to Traffic Flow

Problems begin on page 71

Self-Study Questions

1. t+ s = 350.

2. z + v = 450.

3. 90 + x = y.

EXERCISES

1.

a) The equations are x+ w = 20, z + w = 50, x+ y = 50, z + y = 80, and
x + y + z + w = 100. We list the variables in the order [x, y, z, w]t. The
corresponding matrix and its reduced form are respectively:

1 0 0 1 20

0 0 1 1 50

1 1 0 0 50

0 1 1 0 80

1 1 1 1 100

 ,


1 0 0 1 20

0 1 0 −1 30

0 0 1 1 50

0 0 0 0 0

0 0 0 0 0


The general solution is [x, y, z, w]t = [20− w, 30 + w, 50− w,w]
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b) From the given 6 ≤ w ≤ 8. From the solution the largest variable was z
which had a value of 54. Thus West Street had the largest traffic flow. The
traffic on West Street ranged between 52 and 54 cars per minute.

(a) Our assumptions are equivalent with the inequalities

50− w ≥ 20− w always true
50− w ≥ w ⇔ 25 ≥ w

50− w ≥ 30 + w ⇔ 10 ≥ w

Also, since South Street is one way, w ≥ 0. The claim follows.

c) If West Street is closed then z = 0 so w = 50 and x = −30 which is
impossible since East Street is one way.

2. The equations are y = x + 90, y = z + 20, w = z + 30, w = v + 60,
v = x + 40, and x + y + z + w + v = 120. We list the variables in the
order X = [x, y, z, w, v]t. The corresponding matrix, its reduced form, and
the general solution are respectively:

−1 1 0 0 0 90

0 1 −1 0 0 20

0 0 −1 1 0 30

0 0 0 1 −1 60

−1 0 0 0 1 40

1 1 1 1 1 120


,


1 0 0 0 −1 −40

0 1 0 0 −1 50

0 0 1 0 −1 30

0 0 0 1 −1 60

0 0 0 0 0 0


[−40 + v, 50 + v, 30 + v, 60 + v, v]t

3.

a) The equations are z+v = 450, 350 = z+t, u+300 = y+v, t+y = 50+s,
400+x = u+450, 200+s = x+300 and x+y+z+v+s+t+u = 1150. We
list the variables in the order [x, y, z, v, s, t, u]t. The corresponding matrix,
its reduced form, and the general solution are respectively:

0 0 1 1 0 0 0 450

0 0 1 0 0 1 0 350

0 1 0 1 0 0 −1 300

0 1 0 0 −1 1 0 50

1 0 0 0 0 0 −1 50

−1 0 0 0 1 0 0 100

1 1 1 1 1 1 1 1150





1 0 0 0 0 0 0 125

0 1 0 0 0 1 0 275

0 0 1 0 0 1 0 350

0 0 0 1 0 −1 0 100

0 0 0 0 1 0 0 225

0 0 0 0 0 0 1 75

0 0 0 0 0 0 0 0


[125, 275− t, 350− t, 100 + t, 225, t, 75]
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b) We need to minimize z. It is smallest when t is largest which occurs for
t = 275. In this case

[x, y, z, v, s, t, u] = [125, 0, 75, 375, 225, 275, 75]t

1.4 Column Space and Nullspace

Problems begin on page 82

True-False Questions

Note: The dimension of the nullspace of a matrix is the “nullity.”

1. T. The rank is at most 3 so the nullity is at least 4− 3 = 1.

2. F. If the rank is 3 the nullity would be 0.

3. T. A[1, 2, 3]t = A([1, 2, 3]t − [1, 2, 3]t) = 0.

4. T. A[2, 3, 4]t = A[1, 1, 1]t +A[1, 2, 3]t = [2, 3]t.

5. T. If s = −2, X = 0. Hence 0 is a solution and the system is homogeneous.

6. F.X = (s+2)[1, 2, 1]t. Let the system be defined by two independent equations
which both are zero at [1, 2, 1]t, e.g. 2x− y = 0 and x− y + z = 0.

7. F. The rank of this system is 1 so it is a line.

8. F. If X1 = X2, for example, then the spans are equal.

9. F. This set satisfies none of the subspace properties.

10. T.

11. F. It not closed under scalar multiplication.

12. F. The set {0} is a one element subspace.

1.1. a) [0, 5,−11]t, b) [7, 10, 7, 5]t, c) [x1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3]
t.

EXERCISES

1.3. Compute AX for the general element X in the appropriate Rn and set each
entry of the result equal to a constant. For c) , for example, you might choose

x+ 2y + 3z = 17

4x+ 5y + 6z = −4

1.5. The nullspace is spanned by: a) {[−1, 1, 1, 0, 0]t, [−3,−1, 0, 0, 1]t}
c) {[−10,−1, 3]t}, e) {[0, 0]}.
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1.2. In each case we give A and B.

a)

[
1 −3 2

−2 6 −4

]
,

[
2

−4

]
, b)

 1 3 1

2 4 7

3 10 5

 ,
 1

2

7


c)

 1 3 1

2 4 7

4 10 9

 ,
 1

2

4

, d)

 1 3 1

2 4 7

4 10 9

 ,
 1

2

7


e)

 3 7 2

1 −1 1

5 5 4

 ,
 1

2

5

, f)

 2 −3 2

1 −6 1

−1 −3 −1

 ,
 1

2

1



g)

 2 3 −1

1 −1 1

2 3 4

 ,
 −2

2

5

, h)


1 1 1 1

2 −2 1 2

2 −6 3 2

5 −3 3 5

 ,


1

3

1

7



i)


1 1 1 1

2 −2 1 2

2 −6 3 2

5 −3 3 5

 ,


1

3

1

8



1.3. Any equation of the form AX = B where A is the given matrix and B is a
vector of variables of the appropriate length. For example, for c) we might use

x+ 2y + 3z = −1

4x+ 5y + 6z = 2

1.4. The nullspace of a matrix A is found by computed by augmenting A with a
column of zeros and computing its reduced form R which is the reduced form
of A augmented with a column of zeros. Each basis element of the nullspace is
found by setting one of the free vectors in the system corresponding to R equal
to one and the other free variables equal to 0. In each part we give R and the
basis for the nullspace.

a)

 1 0 0 −4/7 0

0 1 0 −3/2 0

0 0 1 −6/7 0

, {[4/7, 3/2, 6/7, 1]t},
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b)


1 0 0

0 1 0

0 0 0

0 0 0

, {[0, 0]t},

c)

[
1 0 −1

0 1 2

]
, {[1,−2, 1]t}

1.5. The process for finding the nullspace is described in the solution to Exercise 1.4.
The reduced forms of the matrices R are the matrices in the solution to Exer-
cise 1.3 on page 16 of this manual, augmented by a column of zeros.

a) {[−1, 1, 1, 0, 0]t, [−3,−1, 0, 0, 1]t},

b) {[1,−1, 0,−1, 1]t} ,

c) {[−10,−1, 3]t},

d) {[1/2, 0, 0, 0,−1, 1]t, [−5, 0, 2, 1, 0, 0]t, [−1/2, 1, 0, 0, 0, 0]t},

e) {[0, 0]},

f) {[0, 0]},

g) {[−5, 1, 0,−2, 1]t, [1,−2, 2, 0, 0]t},

h) {[0, 0, 0, 0]t},

i) {[0, 0, 0, 0]t},

j) {[1,−4, 0, 3]t, [1,−7, 3, 0]t}.

1.6. Let the columns of B be scalar multiples of [1, 2]t.

1.7. According to Theorem 1 on page 74 the columns of B must be scalar multiples
of [1, 2, 3]t.

1.8. Let the columns of B be any four vectors which span the same space as the
given vectors.

1.9. a) Let the columns of B be any four vectors which span the same space as the
given vectors. b) Each element of the span has a zero in the second position.

1.10. Begin with an echelon form 4 × 6 matrix R that represents a consistent rank
three system. Apply elementary row operations toR until a matrix with no zero
entries is obtained. This is easiest if R has as few zero entries as possible.

1.11. The zero vector is always a solution. There are an infinity of solutions due to
the more unknowns theorem.

1.12. The reduced formR ofA is the matrix in (1.20) on page 35 with its fifth column
deleted. The nullspace is found by the process described in the solution to Ex-
ercise 1.4 above. It is the span of [−2, 1, 1, 0]t and [−2, 1, 0, 1]t. This exercise
demonstrates the translation theorem.
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1.13. a) From the reduced form of A given in Example 1.10 on page 53, the general
solution is the sum of [1, 0, 2, 0, 0, 1]t and span of the vectors in b) below.

b) The nullspace is the span of the following vectors: ,
[1, 1, 0, 0, 0, 0]t, [−2, 0,−1, 1, 0, 0]t, [−1, 0, 1, 0, 1, 0]t.

c) One checks by substitution that [−1, 1, 2, 1, 1, 1]t is a particular solution to
the non-homogeneous system. Thus the translation theorem says that the ex-
pression in c) is the general solution to the non-homogenous system.

d) Note that

[1, 1, 0, 0, 0, 0]t + [−2, 0,−1, 1, 0, 0]t = [−1, 1,−1, 1, 0, 0]t

Thus, the three vectors on the right in d) span the the nullspace of A. It follows
from the translation theorem that the expression in d) is the general solution to
the system.

1.14. a) Let the equation be ax + by + cz = d. Since 0 belongs to the span, the
zero vector solves the equation, showing that d = 0. Substituting [1, 2, 1]t and
[1, 0,−3]t into the equation yields the system

a+ 2b+ c = 0

a − 3c = 0

One solution is c = 1, a = 3, b = −2.

b) Let each equation be a multiple of the one from a).

c) Substitute [1, 1, 1]t into the system found in b) producing a vector B. The
desired system is AX = B.

1.15. Let the equation be ax + by + cz = d. From the translation theorem, [1, 2, 1]t

and [1, 0,−3]t must span the solution set for the homogeneous equation. These
vectors both solve the equation 3x − 2y + z = 0. The vector [1, 1, 1]t is a
particular solution to 3x − 2y + z = 2. Any system in which each equation is
a multiple of this equation would have the desired solution set.

1.16. True. Y1 = 2X1 + 2X2, Y2 = X1 −X2. Hence, Y1 and Y2 belong to the span
of the Xi. Since spans are subspaces, the span of the Yi is contained in the span
of the Xi. Conversely, X1 = 1

4Y1 +
1
2Y2 and X2 = 1

4Y1 −
1
2Y2 showing that

the span of theXi is contained in the span of the Yi. Hence, the spans are equal.

1.17. False. Note that Y1 = X1 +X2, Y2 = X1 −X2 and Y3 = X2 showing that the
span of the Yi is contained in the span of the Xi. However X3 is not a linear
combination of the Yi since all of the Yi have their last two entries equal and
the last two entries of X3 are unequal.
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1.18. No, the two answers are not consistent. If the answers were consistent, then
the difference of any two solutions to the system would be a solution to the
homogeneous system which, form Group I’s, answer is spanned by [−3, 1, 1]t

and [−1, 0, 1]t. Thus, there should exist s and t such that the following equation
is true. The corresponding system is, however, inconsistent.

[1, 0, 0]t − [1,−1, 1]t = s[−3, 1, 1]t + t[−1, 0, 1]t

1.19. a) For all scalars a, b, c, and d,

aX + bY + cZ + dW = (a+ 3c)X + (b− 2d)Y

showing that the span of X , Y , Z, and W is contained in the span of X and Y .
Conversely,

aX + bY = aX + bY + 0Z + 0W

showing the equality of the spans.

For span {X,Y, Z,W} = span {Y,W} we would require X = cY for some
scalar c.

1.20. a) If W belongs to span {X,Y, Z}, then W = aX + bY + cZ = aX +
bY + c(2X + 3Y ) = (a+ 2c)X + (b+ 3c)Y , which belongs to span {X,Y }.
Conversely, if W belongs to span {X,Y }, then W = aX + bY = aX +
bY + 0Z, which belongs to span {X,Y, Z}. Thus, the two sets have the same
elements and are therefore equal.

b) From a) it suffices to prove span {X,Y } = span {X,Z}. This follows from
the observations that Z = 2X + 3Y and Y = 1

3Z − 2
3X .

1.21. Let W satisfy the subspace properties. Then W is non-empty since it contains
the zero vector. If X and Y belong to W and a and b are scalars, then aX and
bY both belong to W . Hence aX + bY also belongs to W showing that W is
closed under linear combinations. The converse is clear.

1.22. These are all very similar to part a) which is solved in the text.

1.23. (c Let X and Y be elements of W . Then

X =

[
a b

c d

]
Y =

[
a′ b′

c′ d′

]

where a+b+c+d = 0 = a′+b′+c′+d′. Clearly, W contains the zero vector.
IfX is as above and k is a scalar, then, 0 = k(a+b+c+d) = ka+kb+kc+kd
which is equivalent with kX belonging to W . Similarly,

0 = (a+ b+ c+ d) + (a′ + b′ + c′ + d′)

= (a+ a′) + (b+ b′) + (c′ + c′) + (d+ d′)
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which is equivalent with X + Y belonging to W . This finishes the proof.

1.24. W is the first quadrant in R2. No: W is not closed under scalar multiplication.

1.25. W is the integral lattice in R2. No: W is not closed under scalar multiplication.

1.26. If the first entry of either X or Y is zero, then X + Y will belong to W .
Otherwise, it will not belong to W .

1.27. In this exercise it is easier to use Definition 3 on page 74. Start by noting that
the general upper triangular matrix is

A =

 a b c

0 d e

0 0 f


Letting all of the variables equal zero proves that 0 is upper-triangular; hence
T is non-empty.

Let A′ be another element of T ,

A′ =

 a′ b′ c′

0 d′ e′

0 0 f ′


Then for scalars s and t

sA+ tB =

 sa sb sc

0 sd se

0 0 sf

+

 ta′ tb′ tc′

0 td′ te′

0 0 tf ′



=

 sa+ ta′ sb+ tb′ sc+ tc′

0 sd+ td′ se+ te′

0 0 sf + tf ′


Hence sA + tA′ is upper-triangular, showing that T is closed undder linear
combinations; hence a subspace.

1.28. X = aA + bB will be unipotent if and only if a + b = 1. Hence the set of
unipotent matrices is not closed under linear combinations and not a subspace.

1.29. X = aX + bY is a solution if and only if and only if a+ b = 1.

1.30. b) Suppose that y and z are two solutions. Then

y′′ + 3y′ + 2y = 0

z′′ + 3z′ + 2z = 0
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If we add these two equations, we get (y + z)′′ + (y + z)′ + 2(y + z) = 0,
showing that y+ z is a solution. Multiplying by c yields (cy)′′+(cy)′+2cy = 0
showing that cy is a solution. The other parts are similar.

1.31. b) y = 0 satisfies y′′ + 3y′ + 2y = 0. The sum of any two solutions will solve
the equation y′′ + 3y′ + 2y = 2t. Also z = Cy solves z′′ + 3z′ + 2z = Ct.
The other parts are similar.

1.32. If p(x) = p(x) = anx
n+ · · ·+ a0 and q(x) = bnx

n+ · · ·+ b0 then for scalars
s and t, sp(x) + tq(x) = cnx

n + · · · + c0 where ci = sai + tbi showing that
Pn is closed under linear combinations.

1.33. The set of all polynomial functions is a subspace but the set of polynomial
functions with integral coefficients is not closed under scalar multiplication.

1.34. If f and g satisfy f(1) = g(1) = 0 then for scalars s and t, sf(1) + tg(1) = 0
showing that W is closed under linear combinations.

1.35. If f and g satisfy f ′(3) = g′(3) = 0 then for scalars s and t, (sf + tg)′(3) =
sf ′(3) + t′g(3) = 0 showing that W is closed under linear combinations.

1.36. If f and g satisfy f(1) = g(1) = f(2) = g(2) = 0 then for scalars s and t, the
same is true for sf + tg showing that W is closed under linear combinations.

1.37. b) a+ b = 1. c) This is not a subspace.

1.38.

a) f(x) = x− 3/2.

b) This is clear since for scalars s and t,∫ 2

1

(sf(x) + tg(x)) dx = s

∫ 2

1

f(x) dx+ t

∫ 2

1

g(x) dx

c) From the preceding formula for f, g ∈ V , sf + tg ∈ V if and only if
s+ t = 1. Hence V is not a subspace.

1.39. The zero element belongs to S ∩ T . If X and Y belong to S ∩ T , then X and
Y both belong to S so aX+ bY belongs to S for any scalars a and b. Similarly,
aX + bY belongs to T ; hence to S ∩ T . Thus, S ∪ T is closed under linear
combinations and is a subspace.

1.40. S ∪ T is a subspace only if either S ⊂ T or T ⊂ S . For the proof, suppose
that S is not contained in T . Then S contains an element S which is not in T .
Then for all T in T , U = S + T must be in S ∪ T . But U cannot be in T since
S = T − U and S is not in T . Thus, U belongs to S, proving that T = U − S
belongs to S. Hence, T ⊂ S .

1.41. The zero element belongs to S + T . If X and Y belong to S + T , then X =
X1+X2 and Y = Y1+Y2 whereX1, X2 ∈ S and Y1, Y2 ∈ T . Then aX+bY =
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(aX1 + bX2) + (aY1 + bY2) belongs to S + T Thus, S + T is closed under
linear combinations and is a subspace.


