
Fundamentals of Python: First Programs 1-1

Chapter 1

Introduction

At a Glance

Instructor’s Manual Table of Contents

• Overview

• Objectives

• Teaching Tips

• Quick Quizzes

• Class Discussion Topics

• Additional Projects

• Additional Resources

• Key Terms

Fundamentals of Python: First Programs 1-2

Lecture Notes

Overview

Chapter 1 describes the basic features of an algorithm. Students learn how hardware and
software collaborate in a computer’s architecture. A brief history of computing is
provided. Finally, students learn how to compose and run a simple Python program.

Objectives

After completing this chapter, students will be able to:
• Describe the basic features of an algorithm
• Explain how hardware and software collaborate in a computer’s architecture
• Give a brief history of computing
• Compose and run a simple Python program

Teaching Tips

Two Fundamental Ideas of Computer Science: Algorithms and Information
Processing

1. Explain that computer science focuses on a broad set of interrelated ideas; two of the

most basic of these ideas are algorithms and information processing.

Algorithms

1. Introduce a simple algorithm in class. You may use the subtraction algorithm provided
in the book, a cooking recipe, or any other sequence of instructions that your students
can relate to. Stress that when these instructions are carried out, the computing agent is
a human being.

Teaching
Tip

For more information on the history of algorithms, ask your students to visit
http://www.scriptol.com/programming/algorithm-history.php.

2. Provide a formal definition of the term algorithm.

3. List and explain the four features of an algorithm, specified on Pages 3 and 4 of the text.

Information Processing

1. Describe the role of information processing, introducing the terms data, input and
output.

http://www.scriptol.com/programming/algorithm-history.php�

Fundamentals of Python: First Programs 1-3

The Structure of a Modern Computer System

1. Explain that a modern computer system consists of hardware and software. Note that

software is represented as programs in particular programming languages.

Computer Hardware

1. Use Figure 1.1 to describe the role of each of the most important hardware components
of a modern computer system. Note that not shown in the figure are the computer ports,
which enable computers to connect to networks and to other devices.

2. Use Figure 1.2 to help explain how the computer’s primary or internal or RAM memory

works, explaining that information is stored as patterns of binary digits.

3. Explain the concept of a processor, or CPU, and how it is structured to perform simple
operations.

4. Explain the difference between internal and external or secondary memory. Note that

examples of the latter are magnetic media, semiconductor media, and optical media,
and give examples of each of these media.

Computer Software

1. Explain the concept of computer software as a program stored in memory that can be
executed later. Point out that software is stored in machine code and is loaded into the
memory by a loader.

2. Explain the concept of system software, specifying that the most important example of
system software is the operating system, which includes a file system, one or more user
interfaces, a terminal-based interface, and sometimes also a graphical user interface
(GUI).

3. Explain the concept of application software, specifying how it is created. Be sure to
introduce the terms high-level programming languages, text editor, translator, syntax
errors, run-time system, interpreter, and virtual machine.

Teaching
Tip

For more on the history of computer software, visit
http://www.computerhistory.org/timeline/?category=sl.

4. Use Figure 1.3 to describe the role of the computer software used during the coding

process.

http://www.computerhistory.org/timeline/?category=sl�

Fundamentals of Python: First Programs 1-4

Quick Quiz 1

1. What is an algorithm?
Answer: Informally, an algorithm is like a recipe. It provides a set of instructions that
tells us how to do something, such as make change, bake bread, or put together a piece
of furniture. More precisely, an algorithm describes a process that ends with a solution
to a problem.

2. The part of a computer that is responsible for processing data is the

____________________ (CPU).
Answer: central processing unit

3. True or False: A program stored in computer memory must be represented in binary

digits, which is also known as machine code.
Answer: True

4. A modern ____________________ (GUI) organizes the monitor screen around the

metaphor of a desktop, with windows containing icons for folders, files, and
applications.
Answer: graphical user interface

A Not-So-Brief History of Computing Systems

1. Use Figure 1.4 to provide a brief overview of some of the major developments in the
history of computing.

Before Electronic Digital Computers

1. Briefly note some of the major developments in the history of computing before 1940.
Some important names to mention are: Pascal, Leibnitz, Jacquard, Babbage, Hollerith,
Boole, and Turing.

The First Electronic Digital Computers (1940–1950)

1. Briefly note some of the major developments in the history of computing that took place
during the 1940s. Note that a few mainframe computers were developed in this period
(e.g., Mark I, ENIAC, ABC, Colossus).

2. Stress that John von Neumann developed the first memory-stored programs.

The First Programming Languages (1950–1965)

1. Describe the evolution of the first programming languages, from assembly languages to
high-level programming languages like FORTRAN, LISP, and COBOL. Be sure to
explain the terms keypunch machine, card reader, assembler, compiler, interpreter,
artificial intelligence, and abstraction.

Fundamentals of Python: First Programs 1-5

Teaching
Tip

For a brief history of computer languages and their evolution, visit
http://www.scriptol.org/history.php.

Integrated Circuits, Interaction, and Timesharing (1965–1975)

1. Explain how the invention of the transistor, and later of the integrated circuit, led to the
construction of smaller, faster, less expensive hardware components.

2. Introduce Moore’s Law.

Teaching
Tip

You can find a graph that illustrates Moore’s Law at
http://arstechnica.com/hardware/news/2008/09/moore.ars.

3. Note that computer processing evolved from batch processing to time-sharing to

concurrent processing.

Personal Computing and Networks (1975–1990)

1. Describe the contribution of Engelbart to the creation of the first personal computers.

2. Note some other important developments, such as the Altair, the MS-DOS, the Ethernet,

and ARPANET’s evolution into the Internet.

Consultation, Communication, and Ubiquitous Computing (1990–Present)

1. Note some of the major developments of modern computing, like optical storage media,
virtual reality, and hypermedia.

2. Provide a brief overview of the World Wide Web, making sure to explain the terms
Web server, Web browser, and Web client.

Quick Quiz 2

1. In the late 1930s, ____________________, a mathematician and electrical engineer at
M.I.T., wrote a classic paper titled “A Symbolic Analysis of Relay and Switching
Circuits.”
Answer: Claude Shannon

2. True or False: In the early 1970s, computer scientists realized that a symbolic notation

could be used instead of machine code, and the first assembly languages appeared.
Answer: False

http://www.scriptol.org/history.php�
http://arstechnica.com/hardware/news/2008/09/moore.ars�

Fundamentals of Python: First Programs 1-6

3. What is Moore’s Law?
Answer: This prediction states that the processing speed and storage capacity of
hardware will increase and its cost will decrease by approximately a factor of 2 every
18 months.

4. By the mid 1980s, the ____________________ had grown into what we now call the

Internet, connecting computers owned by large institutions, small organizations, and
individuals all over the world.
Answer: ARPANET

Getting Started with Python Programming

1. Note that Guido van Rossum invented the Python programming language in the early

1990s.

2. Explain that Python is a high-level, general-purpose programming language for solving

problems on modern computer systems.

Teaching
Tip

Python is an interpreted language. Are your students familiar with other
interpreted languages? Ask them to discuss their experiences in class.

Running Code in the Interactive Shell

1. Use Figure 1.6 and one or more real examples to show students how to write and run
code in the Python Shell.

2. Demonstrate to students how they can get help through the command prompt or through
the drop-down menu in the Python shell.

3. Explain and demonstrate how to quit the Python shell.

Input, Processing, and Output

1. Explain the concept of programming language syntax as it applies to Python.

2. Define the concept of a variable, and explain how one can be created to store user input.

3. Define the concept of type conversion functions, and explain how they can be used to

make the user input suitable for the program's needs.

4. Use a few examples to show students how to perform simple input and output
operations in Python.

Editing, Saving, and Running a Script

1. Explain the concept of a script as it applies to Python programs.

Fundamentals of Python: First Programs 1-7

2. Use Figures 1.7 and 1.8 to explain how to edit, save, and run scripts in an IDLE
window.

3. Define the concept of a program library, and explain how such libraries can be used.

Behind the Scenes: How Python Works

1. Use Figure 1.9 to describe how Python code is interpreted and executed in the Python
Virtual Machine (PVM).

Teaching
Tip

A good Python programming tutorial is available at http://docs.python.org/tut/.

Detecting and Correcting Syntax Errors

1. Explain what the syntax of a programming language is.

2. Use one or more examples to stress that when Python encounters a syntax error in a

program, it halts execution with an error message.

Quick Quiz 3

1. The easiest way to open a Python shell is to launch the ____________________.
 Answer: IDLE

2. What is a shell prompt?

Answer: A shell window contains an opening message followed by the special symbol
>>>, called a shell prompt.

3. True or False: In Python, to begin the next output on the same line as the previous one,

you can place a colon at the end of the earlier print statement.
Answer: False

4. The term ___________________ refers to the rules for forming sentences in a

language.
Answer: syntax

Class Discussion Topics

1. Ask your students to talk about any previous programming experience they might have
had. What other programming languages are they familiar with?

2. Students familiar with other programming languages may be surprised that Python
provides an interactive shell that can be used to test simple statements and expressions.

http://docs.python.org/tut/�

Fundamentals of Python: First Programs 1-8

Do they think other programming languages should provide similar functionality? Why
or why not?

Additional Projects

1. Ask students to do some research and create a timetable that describes the evolution of
computer languages from machine language to the present day. The table does not have
to be comprehensive, but it should include approximately ten major languages. For each
language, they should include the creation date and author(s), a brief description, and
the state of its use today.

2. Ask your students how they would like their final class grade to be determined in terms
of the relative weight given to projects, weekly assignments, midterm, final, etc. Then,
ask them to design an algorithm to calculate their final grade using the percentages they
have chosen.

Additional Resources

1. History and evolution of computer languages:

www.scriptol.org/history.php

2. Algorithm:
http://www.wisegeek.com/what-is-an-algorithm.htm

3. Software:

http://www.wordiq.com/definition/Software

4. Python Tutorial:
http://docs.python.org/tut/

Key Terms

 abacus: An early computing device that allowed users to perform simple calculations

by moving beads along wires.
 abstraction: A simplified view of a task or data structure that ignores complex detail.
 algorithm: A finite sequence of instructions that, when applied to a problem, will solve

it.
 Analytical Engine: A general-purpose computer designed in the nineteenth century by

Charles Babbage, but never completed by him.
 application software: Programs that allow human users to accomplish specialized

tasks, such as word processing or database management.
 argument: A value or expression passed in a function or method call.
 artificial intelligence: A field of computer science whose goal is to build machines that

can perform tasks that require human intelligence.
 assembler: A program that translates an assembly language program to machine code.

http://www.scriptol.org/history.php�
http://www.wisegeek.com/what-is-an-algorithm.htm�
http://www.wordiq.com/definition/Software�
http://docs.python.org/tut/�

Fundamentals of Python: First Programs 1-9

 assembly language: A computer language that allows the programmer to express

operations and memory addresses with mnemonic symbols.
 batch processing: The scheduling of multiple programs so that they run in sequence on

the same computer.
 binary digit: A digit, either 0 or 1, in the binary number system. Program instructions

are stored in memory using a sequence of binary digits. See also bit.
 bit: A binary digit.
 bitmap: A data structure used to represent the values and positions of points on a

computer screen or image.
 bit-mapped display screen: A type of display screen that supports the display of

graphics and images.
 byte: A sequence of bits used to encode a character in memory.
 byte code: The kind of object code generated by a Python compiler and interpreted by a

Python virtual machine. Byte code is platform independent.
 card reader: A device that inputs information from punched cards into the memory of

a computer.
 central processing unit (CPU): A major hardware component that consists of the

arithmetic/logic unit and the control unit. Also sometimes called a processor.
 coding: The process of writing executable statements that are part of a program to solve

a problem. See also implementation.
 compiler: A computer program that automatically converts instructions in a high-level

language to byte code or machine language.
 computing agent: The entity that executes instructions in an algorithm.
 concurrent processing: The simultaneous performance of two or more tasks.
 data: The symbols that are used to represent information in a form suitable for storage,

processing, and communication.
 execute: To carry out the instructions of a program.
 external (or secondary) memory: Memory that can store large quantities of data

permanently.
 file system: Software that organizes data on secondary storage media.
 GUI (graphical user interface): A means of communication between human beings

and computers that uses a pointing device for input and a bitmapped screen for output.
The bitmap displays images of windows and window objects such as buttons, text
fields, and drop-down menus. The user interacts with the interface by using the mouse
to directly manipulate the window objects. See also window object.

 hardware: The computing machine and its support devices.
 high-level programming language: Any programming language that uses words and

symbols to make it relatively easy to read and write a program. See also assembly
language and machine language.

 HTML (HyperText Markup Language): A programming language that allows the
user to create pages for the World Wide Web.

 hypermedia: A data structure that allows the user to access different kinds of
information (text, images, sound, video, applications) by traversing links.

 hypertext: A data structure that allows the user to access different chunks of text by
traversing links.

 identifiers: Words that must be created according to a well-defined set of rules but can
have any meaning subject to these rules.

 IDE (integrated development environment): A set of software tools that allows you
to edit, compile, run, and debug programs within one user interface.

Fundamentals of Python: First Programs 1-10

 information processing: The transformation of one piece of information into another

piece of information.
 input: Data obtained by a program during its execution.
 input device: A device that provides information to the computer. Typical input

devices are a mouse, keyboard, disk drive, microphone, and network port. See also I/O
device and output device.

 integrated circuit: The arrangement of computer hardware components in a single,
miniaturized unit.

 internal memory: See main memory
 interpreter: A program that translates and executes another program.
 I/O device: Any device that allows information to be transmitted to or from a computer.

See also input device and output device.
 keypunch machine: An early input device that allowed the user to enter programs and

data onto punched cards.
 library: A collection of methods and data organized to perform a set of related tasks.
 linear: An increase of work or memory in direct proportion to the size of a problem.
 loader: A system software tool that places program instructions and data into the

appropriate memory locations before program start-up.
 machine code: The language used directly by the computer in all its calculations and

processing. Also called machine language.
 magnetic storage media: Any media that allow data to be stored as patterns in a

magnetic field.
 main (primary or internal) memory: The high-speed internal memory of a computer,

also referred to as random access memory (RAM). See also memory and secondary
memory.

 mainframe: Large computers typically used by major companies and universities.
 memory: The ordered sequence of storage cells that can be accessed by address.

Instructions and variables of an executing program are temporarily held here. See also
main memory and secondary memory.

 memory location: A storage cell that can be accessed by address.
 microcomputer: A computer capable of fitting on a laptop or desktop, generally used

by one person at a time.
 Moore’s Law: A hypothesis that states that the processing speed and storage capacity

of computers will increase by a factor of two every 18 months.
 network: A collection of resources that are linked together for communication.
 newline character: A special character (‘\n’) used to indicate the end of a line of

characters in a string or a file stream.
 operating system: A large program that allows the user to communicate with the

hardware and performs various management tasks.
 optical storage media: Devices such as CDs and DVDs that store data permanently

and from which the data are accessed by using laser technology.
 output: Information that is produced by a program.
 output device: A device that allows you to see the results of a program. Typically, it is

a monitor, printer, speaker, or network port.
 port: A channel through which several clients can exchange data with the same server

or with different servers.
 primary memory: See main memory
 processor: See Central Processing Unit (CPU)
 program: A set of instructions that tells the machine (the hardware) what to do.

Fundamentals of Python: First Programs 1-11

 program library: A collection of operations and data organized to perform a set of

related tasks.
 programming language: A formal language that computer scientists use to give

instructions to the computer.
 PVM (Python Virtual Machine): A program that interprets Python byte codes and

executes them.
 RAM (random access memory): High-speed memory where programs and their data

reside during program execution.
 run-time system: Software that supports the execution of a program.
 script: A Python program that can be launched from a computer’s operating system.
 secondary (external) memory: An auxiliary device for memory, usually a disk or

magnetic tape.
 semiconductor storage media: Devices, such as flash sticks, that use solid state

circuitry to store data permanently.
 shell: A program that allows users to enter and run Python program expressions and

statements interactively.
 software: Programs that make the machine (the hardware) do something, such as word

processing, database management, or games.
 software reuse: The process of building and maintaining software systems out of

existing software components.
 solid-state device: An electronic device, typically based on a transistor, which has no

moving parts.
 source code: The program text as viewed by the human being who creates or reads it,

prior to compilation.
 statement: An individual instruction in a program.
 syntax: The rules for constructing well-formed programs in a language. Also, the rules

for forming sentences in a language.
 syntax error: An error in spelling, punctuation, or placement of certain key symbols in

a program. See also compilation error, design error, and run time error.
 system software: The programs that allow users to write and execute other programs,

including operating systems such as Windows and Mac OS.
 Terminal-based interface: A user interface that allows the user to enter input from a

keyboard and view output as text in a window. Also called a terminal-based interface.
 text editor: A program that allows the user to enter text, such as a program, and save it

in a file.
 time sharing: The scheduling of multiple programs so that they run concurrently on the

same computer.
 time-sharing operating system: A computer system that can run multiple programs in

such a manner that its users have the illusion that they are running simultaneously.
 transistor: A device with no moving parts that can hold an electromagnetic signal and

that is used to build computer circuitry for memory and a processor.
 translator: A program that converts a program written in one language to an equivalent

program in another language.
 type conversion functions: A function that takes one type of data as an argument and

returns the same data represented in another type.
 user interface: The part of a software system that handles interaction with users.
 variable: A memory location, referenced by an identifier, whose value can be changed

during execution of a program.
 variable identifier: A name used to reference a variable.

Fundamentals of Python: First Programs 1-12

 virtual machine: A software tool that behaves like a high-level computer.
 virtual reality: A technology that allows a user to interact with a computer-generated

environment, usually simulating movement in three dimensions.
 Web browser: Software used to view information on the Web.
 Web client: Software on a user’s computer that makes requests for resources from the

Web.
 Web server: Software on a computer that responds to requests for resources and makes

them available on the Web.
 window: A rectangular area of a computer screen that can contain window objects.

Windows typically can be resized, minimized, maximized, zoomed, or closed.

	Chapter 1
	Instructor’s Manual Table of Contents

	At a Glance
	Overview
	Objectives
	Teaching Tips
	Teaching
	Teaching
	Teaching
	Teaching
	Teaching
	Teaching
	Class Discussion Topics
	Additional Projects
	Additional Resources

