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Chapter 1

Introduction

1.1 Take x1 = y, x2 = ẏ, . . . , xn = y(n−1). Then

f(t, x, u) =








x2
...
xn

g(t, x, u)







, h = x1

1.2 (a) x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2.

ẋ1 = x2

ẋ2 = − MgL

I
sinx1 −

k

I
(x1 − x3)

ẋ3 = x4

ẋ4 =
k

J
(x1 − x3) +

1

J
u

(b)

∂f

∂x
=







0 1 0 0
(−(MgL/I) cosx1 − k/I) 0 k/I 0

0 0 0 1
k/J 0 −k/J 0







[∂f/∂x] is globally bounded. Hence, f is globally Lipschitz.

(c) x2 = x4 = 0, x1−x3 = 0 ⇒ sinx1 = 0. The equilibrium points are (nπ, 0, nπ, 0)
for n = 0,±1,±2, . . ..

1.3 (a) x1 = δ, x2 = δ̇, x3 = Eq.

ẋ1 = x2

ẋ2 = (P −Dx2 − η1x3 sinx1)/M

ẋ3 = (−η2x3 + η3 cosx1 + EF )/τ

(b) f is continuously differentiable ∀x; hence it is locally Lipschitz ∀x. [∂f2][∂x1] =
−η1x3 cosx1/M is not globally bounded; hence, f is not globally Lipschitz.

1
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2 CHAPTER 1.

(c) Equilibrium points:

0 = x2, 0 = P − η1x3 sinx1, 0 = −η2x3 + η3 cosx1 + EF

Substituting x3 from the third equation into the second one, we obtain

P =
(

a+ b
√

1− y2
)

y
def
= g(y)

where

y = sinx1, a =
η1EF

η2
> P, b =

η1η3
η2

0 ≤ x1 ≤ π

2
⇐⇒ 0 ≤ y ≤ 1

By calculating g′(y) and g′′(y) it can be seen that g(y) starts from zero at
y = 0, increases until it reaches a maximum and then decreases to g(1) = a.
Because P < a, the equation P = g(y) has a unique solution y∗ with 0 <
y∗ < 1. For 0 ≤ x ≤ π/2, the equation y∗ = sinx1 has a unique solution x∗1.
Thus, the unique equilibrium point is (x∗1, 0, (η3/η2) cosx

∗
1 + EF /η2).

1.4 (a) From Kirchoff’s Current Law, is = vC/R+ ic+ iL. Let x1 = φL, x2 = vC ,
and u = is.

ẋ1 =
dφL
dt

= vL = vC = x2

ẋ2 =
dvC
dt

=
iC
C

=
1

C

(

is −
vC
R

− iL

)

= − 1

CR
x2 −

I0
C

sin kx1 +
1

C
u

f(x, u) =

[
x2

− I0
C sinkx1 − 1

CRx2 +
1
C u

]

(b) f is continuously differentiable; hence it is locally Lipschitz.

∂f

∂x
=

[
0 1

−(I0k/C) cos kx1 −1/(CR)

]

[∂f/∂x] is globally bounded. Hence, f is globally Lipschitz.

(c) Equilibrium points:

0 = x2, 0 = I0 sin kx1 + Is ⇒ sin kx1 =
Is
I0
< 1

Let a and b be the solutions of sin y = Is/I0 in 0 < y < π. Then the
equilibrium points are

(
a+ 2nπ

k
, 0), (

b+ 2nπ

k
, 0), n = 0,±1,±2, · · ·

1.5 The Problem statement should say “in Part (c), Is > 0.”
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3

(a) From Kirchoff’s Current Law, is = vC/R+ ic + iL. Let x1 = φL, x2 = vC , and
u = is.

ẋ1 =
dφL
dt

= vL = vC = x2

ẋ2 =
dvC
dt

=
iC
C

=
1

C

(

is −
vC
R

− iL

)

= − 1

CR
x2 −

1

C
(k1x1 + k2x

3
1) +

1

C
u

f(x, u) =

[
x2

− 1
C (k1x1 + k2x

3
1)− 1

CRx2 +
1
C u

]

(b) f is continuously differentiable; hence it is locally Lipschitz.

∂f

∂x
=

[
0 1

−(1/C)(k1 + 3k2x
2
1) −1/(CR)

]

[∂f/∂x] is not globally bounded. Hence, f is not globally Lipschitz.

(c) Equilibrium points:

0 = x2, 0 = −k1x1 − k2x
3
1 + Is

There is a unique equilibrium point (x∗1, 0) where x
∗
1 is the unique solution of

k1x
∗
1 + k2x

∗
1
3 = Is.

1.6 Projecting the forceMg in the direction of F , Newton’t law yields the equation
of motion

Mv̇ = F −Mg sin θ − k1sgn(v)− k2v − k3v
2

where k1, k2, and k3 are positive constants. let x = v, u = F , and w = g sin θ. The
state equation is

ẋ = − k1
M

sgn(x)− k2
M
x− k3

M
x2 +

1

M
u− w

1.7 (a) The state model of G(s) is

ż = Az +Bu, y = Cz

Moreover,
u = sin e, e = θi − θo, θ̇o = y = Cz

The state model of the closed-loop system is

ż = Az +B sin e, ė = −Cz

(b) Equilibrium points:
0 = Az +B sin e, Cz = 0

z = −A−1B sin e =⇒ −CA−1B sin e = 0

Since G(s) = C(sI −A)−1B, G(0) = −CA−1B. Therefore

G(0) sin e = 0 ⇐⇒ sin e = 0 ⇐⇒ e = nπ, n = 0,±1,±2, . . .

At equilibrium, z = −A−1B sin e = 0. Hence, the equilibrium points are
(z, e) = (0, nπ).
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4 CHAPTER 1.

1.8 By Newton’s law,

mÿ = mg − ky − c1ẏ − c2ẏ|ẏ|

where k is the spring constant. Let x1 = y and x2 = ẏ.

ẋ1 = x2, ẋ2 = g − k

m
x1 −

c1
m
c2 −

c2
m
x2|x2|

1.9 (a) Substitution of v̇ = A(h)ḣ and wo = k
√
p− pa = k

√
ρgh in v̇ = wi − wo,

results in

A(h)ḣ = wi − k
√

ρgh

With x = h, u = wi, and y = h, the state model is

ẋ =
1

A(x)
(u− k

√
ρgx) , y = x

(b) With x = p− pa, u = wi, and y = h, using ṗ = ρgḣ, the state model is

ẋ =
ρg

A( x
ρg )

(u− k
√
x), y =

x

ρg

(c) From part (a), the equilibrium points satisfy

0 = u− k
√
ρgx

For x = r, u = k
√
ρgr.

1.10 (a)

ẋ = ṗ =
ρgv̇

A
=

ρg

A
(wi − w0)

=
ρg

A

{

α

[

1−
(
p− pa
β

)2
]

− k
√
p− pa

}

=
ρg

A

[

α

(

1− x2

β2

)

− k
√
x

]

(b) At equilibrium,

0 = α

(

1− x2

β2

)

− k
√
x

1− x2

β2
=
k

α

√
x

The left-hand side is monotonically decreasing over [0, β] and reaches zero
at x = β. The right-hand side is monotonically increasing. Therefore, the
forgoing equation has a unique solution x∗ ∈ (0, β).
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1.11 (a) Let x1 = p1 − pa and x2 = p2 − pa.

ẋ1 = ṗ1 =
ρg

A
v̇1 =

ρg

A
(wp − w1)

=
ρg

A

{

α

[

1−
(
p1 − pa
β

)2
]

− k1
√
p1 − p2

}

=
ρg

A

[

α

(

1− x21
β2

)

− k1
√
x1 − x2

]

ẋ2 = ṗ2 =
ρg

A
v̇2 =

ρg

A
(w1 − w2)

=
ρg

A

(
k1
√
x1 − x2 − k2

√
x2
)

(b) At equilibrium,

0 = α

(

1− x21
β2

)

− k1
√
x1 − x2, 0 = k1

√
x1 − x2 − k2

√
x2

From the second equation,

x2 =
k21

k21 + k22
x1 =⇒

√
x1 − x2 =

k2
√
x1

√

k21 + k22

Substitution of
√
x1 − x2 in the first equation results in

1− x21
β2

=
k1k2

√
x1

√

k21 + k22

The left-hand side is monotonically decreasing over [0, β] and reaches zero
at x1 = β. The right-hand side is monotonically increasing. Therefore, the
forgoing equation has a unique solution x∗1 ∈ (0, β). Hence, there is a unique
equilibrium point at (x∗1, x

∗
2), where x

∗
2 = x∗1k

2
1/(k

2
1 + k22).

1.12 (a)

f(x, u) =

[
x2

− sinx1 − bx2 + cu

]

Partial derivatives of f are continuous and globally bounded; hence, f is
globally Lipschitz.

(b) η(x1, x2) is discontinuous; hence the right-hand-side function is not locally
Lipschitz.

(c) The right-hand-side function is locally Lipschitz if h(x1) is continuously differ-
entiable. For typical h, as in Figure A.4(b), ∂h/∂x1 is not globally bounded;
in this case, it is not globally Lipschitz

(d) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f2/∂z2 = −εz22 is not globally bounded; hence, f is not globally
Lipschitz.
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6 CHAPTER 1.

(e) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f1/∂x2 = u; ∂f2/∂x1 = −u. Since 0 < u < 1, the partial
derivatives are bounded; hence, f is globally Lipschitz.

(f) The right-hand-side function f is continuously differentiable; hence it is lo-
cally Lipschitz. ∂f1/∂x2 = x1ν

′(x2) is not globally bounded; hence, f is not
globally Lipschitz.

(g) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f1/∂x2 = −d1x3 is not globally bounded; hence, f is not globally
Lipschitz.

(h) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f2/∂x3 = −8cx3/(1 + x1)

2 is not globally bounded; hence, f is
not globally Lipschitz.

(i) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f3/∂x1 = x3/T is not globally bounded; hence, f is not globally
Lipschitz.

(j) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. The partial derivatives of C(x1, x2)x2 are not globally bounded;
hence, f is not globally Lipschitz.

(k) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f2/∂x2 = −2(mL)2x2 sinx1 cosx1/∆(x1) is not globally bounded;
hence, f is not globally Lipschitz.

(l) The right-hand-side function f is continuously differentiable; hence it is locally
Lipschitz. ∂f2/∂x2 = −2(mL)2x2 sinx1 cosx1/∆(x1) is not globally bounded;
hence, f is not globally Lipschitz.

1.13
y = z1 = x1 =⇒ T1(x) = x1

ż1 = ẋ1 =⇒ z2 = x2 + g1(x1) =⇒ T2(x) = x2 + g1(x1)

ż2 = ẋ2 +
∂g1
∂x1

ẋ1 = x3 + g2(x1 + x2) +
∂g1
∂x1

[x2 + g1(x1)]

=⇒ T3(x) = x3 + g2(x1, x2) +
∂g1
∂x1

[x2 + g1(x1)]

T (x) =





x1
x2 + g1(x1)

x3 + g2(x1, x2) +
∂g1
∂x1

[x2 + g1(x1)]





∂T

∂x
=





1 0 0
∗ 1 0
∗ ∗ 1





[∂T/∂x] is nonsingular for all x and ‖T (x)‖ → ∞ as ‖x‖ → ∞. Hence, T is a
global diffeomorphism. To show that ‖T (x)‖ → ∞ as ‖x‖ → ∞, note that if
‖x‖ → ∞ then |xi| → ∞ for at least one of the components of x. If |x1| → ∞, then
|T1(x)| → ∞. If |x1| does not tend to ∞, but |x2| does, then, |T2(x)| → ∞. If both
|x1| and |x2| do not go to ∞, but |x3| does, then, |T3(x)| → ∞.
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1.14
y = z1 = x1 =⇒ T1(x) = x1

ż1 = ẋ1 =⇒ z2 = sinx2 =⇒ T2(x) = sinx2

T (x) =

[
x1

sinx2

]

,
∂T

∂x
=

[
1 0
0 cosx2

]

[∂T/∂x] is nonsingular for −π/2 < x2 < π/2. The inverse transformation is given
by

x1 = z1, x2 = sin−1(z2)

ż1 = z2, ż2 = (−x21 + u) cosx2 = −z21 cos(sin−1(z2)) + cos(sin−1(z2))u

a(z) = −z21 cos(sin−1(z2)) = −z21
√

1− z22 , b(z) = cos(sin−1(z2)) =
√

1− z22
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