CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form A

1. (a) _____

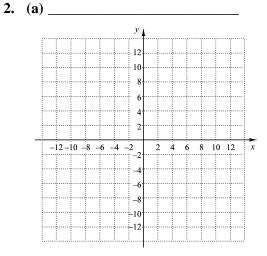
- 1. Consider $\lim_{x\to 5} f(x)$, where $f(x) = \frac{x^2 25}{x 5}$.
 - (a) Complete the following input-output tables.

$x \rightarrow 5^-$	f(x)	$x \rightarrow 5^+$	f(x)
4		6	
4.7		5.5	
4.9		5.1	
4.99		5.01	
4.999		5.001	
4.9999		5.0001	

(b) Find $\lim_{x\to 5^-} f(x)$, $\lim_{x\to 5^+} f(x)$, and $\lim_{x\to 5} f(x)$, if each exists.

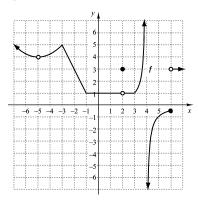
(b)				

- **2.** Consider $\lim_{x \to 5} f(x)$, where $f(x) = \frac{x^2 25}{x 5}$.
 - (a) Graph the function and use the graph to find the limit.



- **(b)** Find the limit algebraically. Show all work.
- (b) _____

Limits Graphically. Consider the following graph of function *f* for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -3} f(x)$$

$$4. \quad \lim_{x \to 4} f(x)$$

$$5. \quad \lim_{x \to 2} f(x)$$

$$6. \quad \lim_{x \to 6} f(x)$$

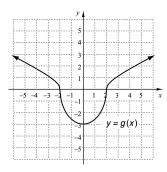
$$7. \quad \lim_{x \to -2} f(x)$$

$$8. \quad \lim_{x \to -5} f(x)$$

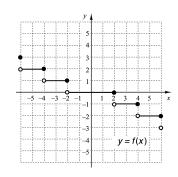
3. _____

Determine whether the function is continuous. If a function is discontinuous, state why.

9.



10.



For the function in Question 10, answer the following.

11. Find $\lim_{x \to -4} f(x)$.

11. _____

12. Find f(-4).

12. _____

13. Is f continuous at -4?

13. _____

14. Find $\lim_{x \to -3} f(x)$.

14. _____

15. Find f(-3).

15. _____

16. Is f continuous at -3?

16. _____

Find the limit if it exists.

17.
$$\lim_{x \to 4} (x^4 - 5x^2 + 2)$$

17. _____

18.
$$\lim_{x \to -4^{-}} \frac{x+4}{x^2-x-20}$$

19.
$$\lim_{x\to 0} -\frac{3}{x}$$

- 19. _____
- **20.** Find the simplified difference quotient for: $f(x) = -3x^2 + 7$.
- 20. _____
- **21.** Find an equation of the tangent line to the graph of $y = 4x + \left(-\frac{6}{x}\right)$ at the point (3, 10).
- 21. _____
- **22.** Find the points on the graph of $y = x^3 2x^2$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{17}$$

24.
$$y = 8\sqrt[4]{x} - 3\sqrt{x}$$

25.
$$y = -\frac{8}{r^3}$$

26.
$$y = x^{3/8}$$

27.
$$y = 0.32x^4 - 7x^2 + 3$$

Differentiate.

28.
$$y = \frac{5}{8}x^8 - 4x^6 + 5x + 10$$

29.
$$y = \frac{x+4}{4-x}$$

30.
$$f(x) = (3-x)^4(x+5)^3$$

31.
$$y = (6x^2 - 10x + 1)^{-4}$$

32.
$$f(x) = x\sqrt{x^3 - 6}$$

33. For
$$y = 4x^6 - 9x^3$$
, find $\frac{d^3y}{dx^3}$.

- **34.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 40x and $C(x) = x^{1/4} + 650$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when *x* items are produced.
- 34. (a) _____
- **(b)** The rate at which average cost is changing when 15 items are produced.
- (b) _____
- **35.** Volume of a scoop of ice cream. The volume of a spherical scoop of ice cream with radius r is given by $V = \frac{4}{3}\pi r^3$, where r is measured in inches.
 - (a) Find the rate of change of the volume of the scoop of ice cream with respect to the radius.
- 35. (a) _____
- **(b)** What is the volume when the radius is 0.5 in.?
- (b) _____
- (c) Find the rate of change of the volume of the scoop of ice cream when r = 0.5.
- (c) _____

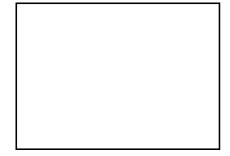
- **36.** Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that $f(x) = x^2 + 9$ and $g(x) = x^3 1$.
- 36. _____

- **37.** Differentiate $y = \sqrt{(2-3x)^{2/3}(5+x)^{1/2}}$.
- 37. _____

38. Find $\lim_{x\to 2} \frac{x^3-8}{x-2}$.

- 38. _____
- **39.** Graph f and f' over the given interval. Then estimate points at which the tangent line to f is horizontal.

$$f(x) = 6x^3 - 20x^2 + 10x + 3\sqrt{x}$$
; [0, 5]



40. Find the following limit by creating a table of values:

$$\lim_{x \to 6} \frac{\sqrt{2x+4} - 4}{x-6}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{2x+4} - 4}{x-6}$$

and use the TRACE feature to further verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form B

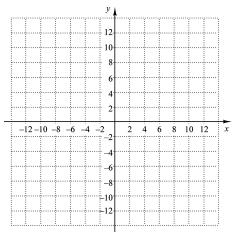
- 1. Consider $\lim_{x\to 3} f(x)$, where $f(x) = \frac{x^2-9}{x-3}$.
 - (a) Complete the following input-output tables.

$x \rightarrow 3^-$	f(x)	$x \rightarrow 3^+$	f(x)
2		4	
2.7		3.5	
2.9		3.1	
2.99		3.01	
2.999		3.001	
2.9999		3.0001	

1. (a) _____

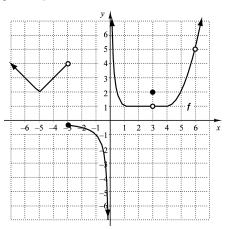
- **(b)** Find $\lim_{x\to 3^-} f(x)$, $\lim_{x\to 3^+} f(x)$, and $\lim_{x\to 3} f(x)$, if each exists.
- (b) _____

- 2. Consider $\lim_{x\to 3} f(x)$, where $f(x) = \frac{x^2-9}{x-3}$.
 - (a) Graph the function and use the graph to find the limit.



- (\boldsymbol{b}) Find the limit algebraically. Show all work.
- (b) _____

Limits Graphically. Consider the following graph of function *f* for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -5} f(x)$$

$$4. \quad \lim_{x \to -3} f(x)$$

$$5. \quad \lim_{x \to 0} f(x)$$

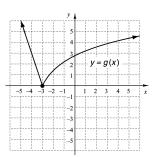
$$\mathbf{6.} \quad \lim_{x \to 3} f(x)$$

$$7. \quad \lim_{x \to 5} f(x)$$

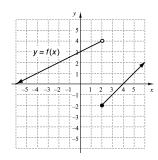
$$8. \quad \lim_{x \to 6} f(x)$$

Determine whether the function is continuous. If a function is discontinuous, state why.

9.



10.



3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

9. _____

For the function in Question 10, answer the following.

11. Find $\lim_{x\to 0} f(x)$.

11. _____

12. Find f(0).

12. _____

13. Is *f* continuous at 0?

13. _____

14. Find $\lim_{x \to 2} f(x)$.

14. _____

15. Find f(2).

15. _____

16. Is *f* continuous at 2?

16. _____

Find the limit if it exists.

17.
$$\lim_{x\to 2} (-3x^3 + 5x^2 + 6)$$

17. _____

18.
$$\lim_{x\to 5^+} \frac{x-5}{x^2-x-20}$$

19.
$$\lim_{x\to 0} \frac{8}{x}$$

- 19. _____
- **20.** Find the simplified difference quotient for: $f(x) = -5x^2 3$.
- 20. _____
- **21.** Find an equation of the tangent line to the graph of $y = -2x + \left(\frac{6}{x}\right)$ at the point (2,-1).
- 21. _____
- **22.** Find the points on the graph of $y = 6x^3 + 9x^2$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{53}$$

24.
$$y = 5\sqrt[3]{x} + 4\sqrt{x}$$

25.
$$y = -\frac{11}{x^2}$$

26.
$$y = x^{2/5}$$

27.
$$y = 0.18x^3 - 5x^2 + 4$$

Differentiate.

28.
$$y = \frac{2}{3}x^3 - 4x^2 + 10x + 6$$

29.
$$y = \frac{5x+2}{x^4}$$

30.
$$f(x) = (x+2)^3(2-x)^2$$

31.
$$y = (3x^4 - 4x^2 + 6)^{-5}$$

32.
$$f(x) = x^2 \sqrt{x-5}$$

33. For
$$y = 5x^4 - x^2 + 6$$
, find $\frac{d^3y}{dx^3}$.

- **34.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 50x and $C(x) = x^{3/5} + 750$, where x is the number of items produced and R(x) and C(x) are in dollars, find: (a) The average revenue, the average cost and the average profit when x items are produced. (b) The rate at which average cost is changing when 12 items are produced.
- **35.** Growth of baby boy. The median weight of a boy. in pounds, whose age is between 0 and 36 months, can be approximated by the function: $W = 8.15 + 1.82t - 0.0596t^2 + 0.000758t^3$, where time *t* is measured in months.
 - (a) Find the rate of change of the weight of the baby boy with respect to time.
 - **(b)** What is the weight of the baby boy when he is 18 months old?
 - (c) Find the rate of change of the baby's weight when he is 18 months old.
- **36.** Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that $f(x) = 4x + x^2$ and $g(x) = \sqrt{x} + 1$.
- **37.** Differentiate $y = \sqrt{(5-4x)^{4/3}(5+4x)^{1/2}}$.
- **38.** Find $\lim_{x\to 3} \frac{27-x^3}{3-x}$.
- **39.** Graph f and f' over the given interval. Then estimate points at which the tangent line to f is horizontal.

$$f(x) = 4x^3 - 25x^2 + 32x + 4\sqrt{x}$$
; [0, 5]

- 34. (a) _____
 - (b) _____

- 35. (a) _____
 - (b) _____
- 37.
- 39.



40. Find the following limit by creating a table of values:

$$\lim_{x \to 2} \frac{\sqrt{7x + 2} - 4}{2 - x}$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{7x+2} - 4}{2-x}$$

and use the TRACE feature to further verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form C

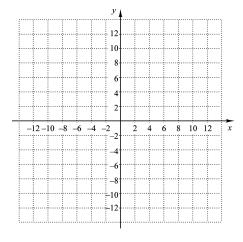
- 1. Consider $\lim_{x\to 4} f(x)$, where $f(x) = \frac{x^2 16}{x 4}$.
 - (a) Complete the following input-output tables.

$x \rightarrow 4^-$	f(x)	$x \rightarrow 4^+$	f(x)
3		5	
3.7		4.5	
3.9		4.1	
3.99		4.01	
3.999		4.001	
3.9999		4.0001	

1. (a) _____

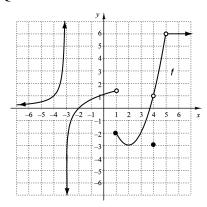
- **(b)** Find $\lim_{x\to 4^-} f(x)$, $\lim_{x\to 4^+} f(x)$, and $\lim_{x\to 4} f(x)$, if each exists.
- b) _____

- **2.** Consider $\lim_{x \to 4} f(x)$, where $f(x) = \frac{x^2 16}{x 4}$.
 - (a) Graph the function and use the graph to find the limit.



- (\mathbf{b}) Find the limit algebraically. Show all work.
- (b) _____

Limits Graphically. Consider the following graph of function *f* for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -3} f(x)$$

$$4. \quad \lim_{x \to -2} f(x)$$

$$5. \quad \lim_{x \to 1} f(x)$$

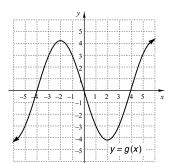
$$6. \quad \lim_{x \to 2} f(x)$$

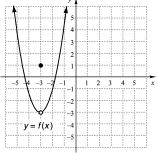
$$7. \quad \lim_{x \to 4} f(x)$$

$$8. \quad \lim_{x \to 5} f(x)$$

function is discontinuous, state why. 9. 10.

Determine whether the function is continuous. If a





3. _____

4. _____

5. _____

6. _____

7. _____

For the function in Question 10, answer the following.

11. Find $\lim_{x \to -3} f(x)$.

11. _____

12. Find f(-3).

12. _____

13. Is f continuous at -3?

13. _____

14. Find $\lim_{x \to -1} f(x)$.

14. _____

15. Find f(-1).

15. _____

16. Is f continuous at -1?

16. _____

Find the limit if it exists.

17.
$$\lim_{x \to -2} (4x^3 - 6x^2 - 3x + 1)$$

17. _____

18. $\lim_{x \to 2^{-}} \frac{x^2 - 11x + 18}{x - 2}$

18. _____

19. $\lim_{x\to 0} \frac{15}{x}$

- 19. _____
- **20.** Find the simplified difference quotient for: $f(x) = 4x^2 + 6$
- 20. _____
- **21.** Find an equation of the tangent line to the graph of $y = -x + \left(\frac{4}{x}\right)$ at the point (2,0).
- 21. _____
- 22. Find the points on the graph of $y = 3x^3 9x$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{46}$$

24.
$$v = 5\sqrt[3]{x} + 2\sqrt{x}$$

25.
$$y = -\frac{7}{x^7}$$

26.
$$y = x^{7/3}$$

27.
$$y = 6.3x^3 - 4x^2 - 5$$

Differentiate.

28.
$$y = -\frac{2}{3}x^3 + 16x^2 + 4x + 11$$

29.
$$y = \frac{2x-1}{x^4}$$

30.
$$f(x) = (x+5)^5(4-x)^2$$

31.
$$y = (3x^3 - 5x^2 + 8)^{-3}$$

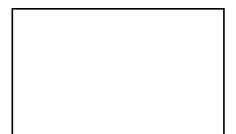
32.
$$f(x) = x\sqrt{x^4 + 2}$$

33. For
$$y = 3x^6 - 4x^3$$
, find $\frac{d^3y}{dx^3}$.

	-				
34.	Business: average revenue, cost and profit. Given revenue and cost functions $R(x) = 25x$ and $C(x) = x^{2/5} + 400$, where x is the number of items produced and $R(x)$ and $C(x)$ are in dollars, find:				
	(a) The average revenue, the average cost and the average profit when x items are produced.	34.	(a)		
	(b) The rate at which average cost is changing when 18 items are produced.		(b)		
35.	<i>Ozone level</i> . The ozone level (in parts per billion) in a metropolitan area is modeled by $P = 60 + 15t - t^2$, where t is time in hours and $t = 0$ corresponds to 8:00am.				
	(a) Find the rate of change of the ozone level with respect to time.	35.	(a)	 	
	(b) What is the ozone level at $t = 6$?		(b)	 	
	(c) Find the rate of change of the ozone level at $t = 6$.		(c)		
36.	Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that $f(x) = 3x^2 - x$ and $g(x) = -6x^3$.	36.			
37.	Differentiate $y = \sqrt{(4-3x)^{6/5}(1+x)^{2/5}}$.	37.			
38.	Find $\lim_{x \to -2} \frac{x^3 + 8}{x + 2}.$	38.			
39.	Graph f and f' over the given interval. Then estimate	39.			

points at which the tangent line to f is horizontal.

$$f(x) = 2x^5 - 5x^2 - x + 2$$
; [-3, 3]



40. Find the following limit by creating a table of values: **40.**

$$\lim_{x\to 0}\frac{\sqrt{16-4x}-4}{x}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{16 - 4x} - 4}{x}$$

and use the TRACE feature to further verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form D

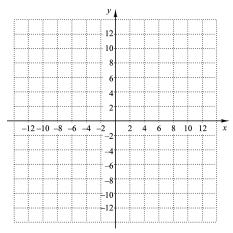
- 1. Consider $\lim_{x \to -4} f(x)$, where $f(x) = \frac{x^2 16}{x + 4}$.
 - (a) Complete the following input-output tables.

ı.	(a)				

$x \rightarrow -4^-$	f(x)	$x \rightarrow -4^+$	f(x)
-5		-3	
-4.5		-3.7	
-4.1		-3.9	
-4.01		-3.99	
-4.001		-3.999	
-4.0001		-3.9999	

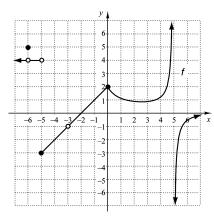
- **(b)** Find $\lim_{x \to -4^-} f(x)$, $\lim_{x \to -4^+} f(x)$, and $\lim_{x \to -4} f(x)$, if each exists
- b) _____

- 2. Consider $\lim_{x \to -4} f(x)$, where $f(x) = \frac{x^2 16}{x + 4}$.
 - (a) Graph the function and use the graph to find the limit.



- **b)** Find the limit algebraically. Show all work.
- (b) _____

Limits Graphically. Consider the following graph of function *f* for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -5} f(x)$$

$$4. \quad \lim_{x \to -3} f(x)$$

$$5. \quad \lim_{x \to 0} f(x)$$

$$6. \quad \lim_{x \to -2} f(x)$$

7.
$$\lim_{x \to 5} f(x)$$

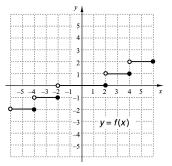
$$8. \quad \lim_{x \to -6} f(x)$$

9.

10.

Determine whether the function is continuous. If a

function is discontinuous, state why.



-5 -4 -3 -2 -1 1 2 3 4 5 x

-5 -4 -3 -2 -1 1 2 3 4 5 x

-5 -4 -3 -5 -5 9 9 9 (x)

3.		

9. _____

10.

For the function in Question 9, answer the following.

11. Find $\lim_{x \to -3} f(x)$.

11. _____

12. Find f(-3).

12.

13. Is f continuous at -3?

13. _____

14. Find $\lim_{x \to 4} f(x)$.

14. _____

15. Find f(4).

15. _____

16. Is *f* continuous at 4?

16. _____

Find the limit if it exists.

17.
$$\lim_{x \to -1} (5x^4 + 3x^3 - 6x^2 - 4x)$$

17. _____

18. $\lim_{x \to -2^-} \frac{x+2}{3x(x^2-4)}$

18. _____

19. $\lim_{x\to 2} \frac{5}{x-2}$

- 19. _____
- **20.** Find the simplified difference quotient for: $f(x) = 3x^2 7x$.
- 20. _____
- **21.** Find an equation of the tangent line to the graph of $y = 4x + \left(-\frac{10}{x}\right)$ at the point (5, 18).
- 21. _____
- **22.** Find the points on the graph of $y = 2x^3 3x^2$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{28}$$

24.
$$y = 2\sqrt[4]{x} - 4\sqrt{x}$$

25.
$$y = \frac{4}{x^8}$$

26.
$$y = x^{2/7}$$

27.
$$y = 2.7x^3 - 3x^2 - 1$$

Differentiate.

28.
$$y = \frac{1}{10}x^5 + 3x^4 - 6x - 6$$

29.
$$y = \frac{6-x}{x^2}$$

30.
$$f(x) = (x+1)^3(6-x)^2$$

31.
$$y = (2x^3 + 16x^2 - 3x)^{-4}$$

32.
$$f(x) = x^2 \sqrt{x^4 - 1}$$

33. For
$$y = 2x^6 - 10x^2$$
, find $\frac{d^3y}{dx^3}$.

- **34.** Business: average revenue, cost and profit. Given revenue and cost functions R(x) = 45x and $C(x) = x^{3/4} + 550$, where x is the number of items produced and R(x) and C(x) are in dollars, find:
 - (a) The average revenue, the average cost and the average profit when *x* items are produced.
- 34. (a) _____
- **(b)** The rate at which average cost is changing when 20 items are produced
- (b) _____
- **35.** Population growth rate. The population of a city grows from an initial size of 50,000 to a size of P given by $P = 50,000 + 1800t^2$, where t is in years.
 - (a) Find the rate of change (growth rate) of the population with respect to *t*.
 - **(b)** What is the population of this city after 20 years?
 - (c) Find the rate of change of the population of this city after 20 years.
- 35. (a) _____
 - (b) _____
 - (c) _____

- **36.** Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that $f(x) = \sqrt{x+4}$ and $g(x) = x^2 + x$.
- 36. _____

- 37 Differentiate $y = \sqrt{(5-2x)^{1/4}(x+6)^{3/4}}$.
- 37. _____

38. Find $\lim_{x\to 5} \frac{x^3 - 125}{x - 5}$.

- 38. _____
- **39.** Graph f and f' over the given interval. Then estimate points at which the tangent line to f is horizontal.

$$f(x) = 2x^3 - 6x^2 + 2x + 2\sqrt{x}$$
; [0, 5]

40. Find the following limit by creating a table of values:

$$\lim_{x \to 5} \frac{\sqrt{6x - 5} - 5}{x - 5}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{6x - 5} - 5}{x - 5}$$

and use the TRACE feature to further verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form E

1. (a) _____

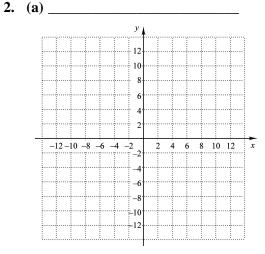
- 1. Consider $\lim_{x \to -5} f(x)$, where $f(x) = \frac{x^2 25}{x + 5}$.
 - (a) Complete the following input-output tables.

$x \rightarrow -5^-$	f(x)	$x \rightarrow -5^+$	f(x)
-6		-4	
-5.5		-4.7	
-5.1		-4.9	
-5.01		-4.99	
-5.001		-4.999	
-5.0001		-4.9999	

(b) Find $\lim_{x \to -5^-} f(x)$, $\lim_{x \to -5^+} f(x)$, and $\lim_{x \to -5} f(x)$, if each exists.

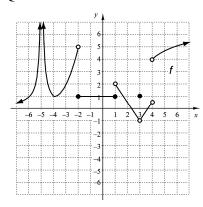
b)		

- **2.** Consider $\lim_{x \to -5} f(x)$, where $f(x) = \frac{x^2 25}{x + 5}$.
 - (a) Graph the function and use the graph to find the limit.



- (b) Find the limit algebraically. Show all work.
- (b)_____

Limits Graphically. Consider the following graph of function f for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -5} f(x)$$

$$4. \quad \lim_{x \to -2} f(x)$$

$$5. \quad \lim_{x \to 0} f(x)$$

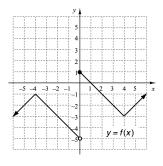
$$6. \quad \lim_{x \to 3} f(x)$$

$$7. \quad \lim_{x \to 4} f(x)$$

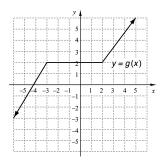
$$8. \quad \lim_{x \to -4} f(x)$$

Determine whether the function is continuous. If a function is discontinuous, state why.

9.



10.



For the function in Question 9, answer the following.

11. Find $\lim_{x \to 4} f(x)$.

11. _____

12. Find f(4).

12. _____

13. Is *f* continuous at 4?

13. _____

14. Find $\lim_{x \to 0} f(x)$.

14. _____

15. Find f(0).

15. _____

16. Is *f* continuous at 0?

16. _____

Find the limit if it exists.

17.
$$\lim_{x\to 3} (-2x^3 + 6x^2 - 4)$$

17. _____

18.
$$\lim_{x \to -3^+} \frac{x+3}{x(x^2-9)}$$

19.
$$\lim_{x \to -6} \frac{6}{x+6}$$

- 19. _____
- **20.** Find the simplified difference quotient for: $f(x) = 5x^2 8x$.
- 20. _____
- **21.** Find an equation of the tangent line to the graph of $y = 2x + \left(\frac{3}{x}\right)$ at the point (1, 5).
- 21. _____
- **22.** Find the points on the graph of $y = x^3 3x^2$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{113}$$

24.
$$y = 5\sqrt[3]{x} + 6\sqrt{x}$$

25.
$$y = \frac{120}{x^5}$$

26.
$$y = x^{4/5}$$

27.
$$y = 0.59x^4 - 6x^2 + 8$$

Differentiate.

28.
$$y = \frac{3}{4}x^4 - 5x^2 + 4x + 1$$

29.
$$y = \frac{3x}{3-x}$$

30.
$$f(x) = (x+1)^3(3-x)^4$$

31.
$$y = (6x^2 + 2x^5 + x^6)^{-4}$$

32.
$$f(x) = x\sqrt{x^6 - 2}$$

33. For
$$y = 280x - 3x^5$$
, find $\frac{d^3y}{dx^3}$.

34.	Business: average revenue, cost and profit. Given revenue and cost functions $R(x) = 25x$ and $C(x) = x^{1/3} + 1000$, where x is the number of items				
	produced and $R(x)$ and $C(x)$ are in dollars, find:				
	(a) The average revenue, the average cost and the average profit when x items are produced.	34.	(a)		
	(b) The rate at which average cost is changing when 25 items are produced.		(b) _		
35.	Social Sciences: memory. In a certain memory experiment, a person is able to memorize M words after t minutes, where $M = -0.002t^3 + 0.1t^2$.				
	(a) Find the rate of change of the number of words memorized with respect to time.	35.	(a) _		
	(b) How many words are memorized during the first 20 minutes (at $t = 20$)?		(b) _		
	(c) Find the rate at which words are being memorized after 20 minutes?		(c) _		
36.	Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that $f(x) = 2x^2 - x$ and $g(x) = x + 5$.	36.			
37.	Differentiate $y = \sqrt{(6-3x)^{1/3}(10+x)^{4/3}}$.	37.			
38.	Find $\lim_{x \to -4} \frac{x^3 + 64}{x + 4}$.	38.			
		39.			_
39.	Graph f and f' over the given interval. Then estimate points at which the tangent line to f is horizontal. Sketch the graphs.				
	$f(x) = 3x^5 - 15x^2 + 15x$; [-3, 3]				

40. Find the following limit by creating a table of values:

$$\lim_{x\to 0}\frac{\sqrt{x^2+1}-1}{x}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{x^2 + 1} - 1}{x}$$

and use the TRACE feature to further verify your assertion.

CALCULUS AND ITS APPLICATIONS

Name:

Chapter 1, Form F

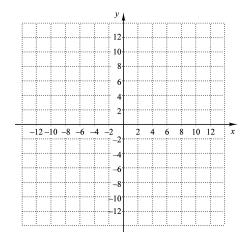
- 1. Consider $\lim_{x \to -3} f(x)$, where $f(x) = \frac{x^2 9}{x + 3}$.
 - (a) Complete the following input-output tables.

$x \rightarrow -3^-$	f(x)	$x \rightarrow -3^+$	f(x)
-4		-2	
-3.5		-2.7	
-3.1		-2.9	
-3.01		-2.99	
-3.001		-2.999	
-3.0001		-2.9999	

1. (a) _____

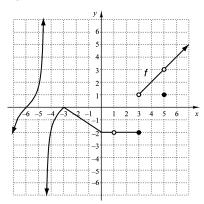
- **(b)** Find $\lim_{x \to -3^-} f(x)$, $\lim_{x \to -3^+} f(x)$, and $\lim_{x \to -3} f(x)$, if each exists.
- b) _____

- 2. Consider $\lim_{x \to -3} f(x)$, where $f(x) = \frac{x^2 9}{x + 3}$.
 - (a) Graph the function and use the graph to find the limit.



- (b) Find the limit algebraically. Show all work.
- (b)_____

Limits Graphically. Consider the following graph of function f for Questions 3-8.



Find the limit, if it exists.

$$3. \quad \lim_{x \to -3} f(x)$$

4.
$$\lim_{x \to -4.5} f(x)$$

$$5. \quad \lim_{x \to 0} f(x)$$

$$6. \quad \lim_{x \to 3} f(x)$$

$$7. \quad \lim_{x \to 5} f(x)$$

$$8. \quad \lim_{x\to 2} f(x)$$

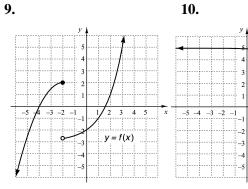
3. _____

5.

8. _____

Determine whether the function is continuous. If a function is discontinuous, state why.

9.



y = g(x)

For the function in Question 9, answer the following.

11. Find $\lim_{x \to -2} f(x)$.

11. _____

12. Find f(-2).

12. _____

13. Is f continuous at -2?

13. _____

14. Find $\lim_{x \to 3} f(x)$.

14. _____

15. Find f(3).

15. _____

16. Is continuous at 3?

16. _____

Find the limit if it exists.

17.
$$\lim_{x \to -4} (5x - x^2 - 2x^3)$$

17. _____

18. $\lim_{x \to 5^+} \frac{x - 5}{4(x^2 - 25)}$

18. _____

19. $\lim_{x \to -3} \frac{4}{x+3}$

- 19. _____
- **20.** Find the simplified difference quotient for:
- 20. _____

- $f(x) = 4x^2 6x.$
- **21.** Find an equation of the tangent line to the graph of $y = 3x + \left(\frac{8}{x}\right)$ at the point (2, 10).
- 21. _____
- **22.** Find the points on the graph of $y = x^3 2x^2$ at which the tangent line is horizontal.
- 22. _____

Find dy/dx.

23.
$$y = x^{85}$$

24.
$$y = 6\sqrt[4]{x} - 2\sqrt{x}$$

25.
$$y = \frac{3}{x^4}$$

26.
$$y = x^{3/5}$$

27.
$$y = 4.1x^4 - 5x^2 + 7$$

Differentiate.

28.
$$y = \frac{3}{4}x^4 + 8x^2 - 161x + 25$$

29.
$$y = \frac{4x^2 + 1}{x^4}$$

30.
$$f(x) = (x+2)^4(3-x)^2$$

31.
$$v = (4x^3 - 2x^2 + 5)^{-4}$$

32.
$$f(x) = x^2 \sqrt{x^3 - 5}$$

33. For
$$y = 4x^6 - 3x^2$$
, find $\frac{d^3y}{dx^3}$.

34.	Business: average revenue, cost and profit. Given revenue and cost functions $R(x) = 30x$ and		
	$C(x) = x^{2/3} + 400$, where x is the number of items		
	produced and $R(x)$ and $C(x)$ are in dollars, find:		
	(a) The average revenue, the average cost and the average profit when <i>x</i> items are produced.	34.	(a)
	(b) The rate at which average cost is changing when 12 items are produced.		(b)
35.	Medicine: temperature during an illness. The temperature T , in degrees Fahrenheit, of a patient taking fever-reducing medicine is given by $T = 0.17t^2 - 1.5t + 102.5$, where t is time in hours.		
	(a) Find the rate of change of the patient's temperature with respect to time.	35.	(a)
	(b) What is the patient's temperature 3 hours after taking the medicine?		(b)
	(c) Find the rate of change of the patient's temperature 3 hours after taking the fever-reducing medicine.		(c)
36.	Find $(f \circ g)(x)$ and $(g \circ f)(x)$, given that	36.	
	$f(x) = \sqrt{x} \text{ and } g(x) = x^2 + 3x.$		
37.	Differentiate $y = \sqrt{(8-2x)^{3/2}(4+x)^{1/3}}$.	37.	
38.	Find $\lim_{x \to -1} \frac{1+x^3}{1+x}.$	38.	
39.	Graph f and f' over the given interval. Then estimate points at which the tangent line to f is horizontal.	39.	
	$f(x) = 2x^5 + 4x^2 - 7x$; [-5, 5]		

40. Find the following limit by creating a table of values:

$$\lim_{x\to 0}\frac{\sqrt{x^2+1}-1}{x}.$$

Start with $\Delta Tbl = 0.1$ and then go to 0.01 and 0.001. When you think you know the limit, graph

$$y = \frac{\sqrt{x^2 + 1} - 1}{x}$$

and use the TRACE feature to further verify your assertion.